Get Me Out of Here: Determining Optimal Policies

Christian Pek

Technische Universität München

July 07, 2017
Motivation

How to exit the labyrinth as fast as possible?

Figure: Labyrinth - The Game
Dynamic Programming:
- Given: grid map $M = \mathbb{Z}^n \times m$ containing static walls $M(i, j) = 1$ and exit(s) of the labyrinth, set of actions $\mathcal{A} = \{\leftarrow, \rightarrow, \uparrow, \downarrow\}$
- Determine optimal policy $\mathcal{P} = \mathbb{Z}^n \times m \rightarrow \mathcal{A}$ to exit the labyrinth
Dynamic Programming:
Given: grid map $M = \mathbb{Z}_2^{n \times m}$ containing static walls $M(i,j) = 1$ and exit(s) of the labyrinth, set of actions $\mathcal{A} = \{\leftarrow, \rightarrow, \uparrow, \downarrow\}$
Determine optimal policy $\mathcal{P} = \mathbb{Z}_2^{n \times m} \rightarrow \mathcal{A}$ to exit the labyrinth

Your task:
- Literature review on Dynamic Programming for robotic motion planning
- Comparison to other path planning algorithms
- Implement the Labyrinth scenario
- Implement the dynamic programming algorithm

Finally: Exit the labyrinth using the optimal policy!

⇒ Any questions? Interested? Feel free to contact me!
christian.pek@tum.de
Dynamic Programming:
- Given: grid map $M = \mathbb{Z}_2^{n \times m}$ containing static walls $M(i,j) = 1$ and exit(s) of the labyrinth, set of actions $\mathcal{A} = \{\leftarrow, \rightarrow, \uparrow, \downarrow\}$
- Determine optimal policy $\mathcal{P} = \mathbb{Z}_2^{n \times m} \rightarrow \mathcal{A}$ to exit the labyrinth

Your task:
- Literature review on Dynamic Programming for robotic motion planning
- Comparison to other path planning algorithms
- Implement the Labyrinth scenario
- Implement the dynamic programming algorithm
- Finally: Exit the labyrinth using the optimal policy!
Dynamic Programming:
- Given: grid map $M = \mathbb{Z}_2^{n \times m}$ containing static walls $M(i,j) = 1$ and exit(s) of the labyrinth, set of actions $A = \{\leftarrow, \rightarrow, \uparrow, \downarrow\}$
- Determine optimal policy $P = \mathbb{Z}_2^{n \times m} \rightarrow A$ to exit the labyrinth

Your task:
- Literature review on Dynamic Programming for robotic motion planning
- Comparison to other path planning algorithms
- Implement the Labyrinth scenario
- Implement the dynamic programming algorithm
- Finally: Exit the labyrinth using the optimal policy!

⇒ Any questions? Interested? Feel free to contact me!
christian.pek@tum.de