Introduction to Pulse Width Modulation (PWM)
What is PWM?

- Output signal alternates between on and off within specified period.
- Control the power received by a device.
- The voltage seen by the load is directly proportional to the source voltage.
What is PWM?

- Depending on the requirement the width of the pulse is modulated (adjusted).
- Duty cycle = \(t_{on} / (t_{on} + t_{off}) \).
Why PWM?

- Analog voltage control:
 - Voltage can be changed to control the motor speed
 - Can NIOS change voltage?
Why PWM?

- Digital voltage control:
 - Can only control ‘1’ and ‘0’
 - X% of maximum analog voltage = X% of duty cycle
PWM Control Example

- **Disco gate:**
 - 100% open gate = 10 persons per second
 - 50% open gate = 5 persons per second

- **Analog control:**
 - Open 50% gate
 - Total how many people can go in 10 seconds?

- **Digital control:**
 - Open 100% gate on every odd second (1, 3, 5, 7, 9, ..)
 - Total how many people can go in 10 seconds?
Usage of PWM

- Motor Control
- Intensity of LED
How to generate PWM signal?

- **Software method**
 - **Using counter**
 - Count to 100 in a loop
 - Set the output value to 1 in the beginning of the loop
 - Set the output value to 0 as soon as the counter reaches the value of required duty cycle.
 - Continue the process
 - **Using interrupt**
 - Home work
 - Think about the concept
Your tasks

- Create projects in a usual way using provided SOPCINFO file.
- Type the code in your application project.
- Change duty cycle variable and observe the effect on oscilloscope or LED.
- Using oscilloscope, verify the duty cycle.
 - Is it precise?
 - Is it efficient?
Software PWM

- Output pin:
 - \texttt{GPIO_0[0]} => \textit{find this pin in the user manual}
 - Using the manual find out the correct pin and observe the resulting PWM on the oscilloscope
 - In C program, use the following instructions to change the output
 - IOWR(\texttt{PIO_0_BASE}, 0, 0); // set output 0
 - IOWR(\texttt{PIO_0_BASE}, 0, 1); // set output 1

- Control LED (optional):
 - Apply the PWM signal to LED, observe the intensity
Questions
Hardware PWM IP

- Programmable/configurable
- Precise
Hardware PWM IP

- Follow the simple use sequence
 - Enable
 - Configure
 - Modify
 - Disable

- Only one function for controlling two PWM signals

```c
motor_setting(phase1, duty1,
              phase2, duty2,
              period, enable);
```
Hardware PWM IP

motor_setting(phase1, duty1, phase2, duty2, period, enable);

Common period

Enable mask = 1
Disable = 0
Questions