(Near-)Optimal Control Strategies for Dynamical Systems

Bastian Schürmann

Technische Universität München

July 15, 2015
Control of Dynamical Systems

Dynamical systems can be modeled using differential equations with states (position, velocity, etc.) and inputs (steering, acceleration, breaking, etc.)

Task: Find an input sequence such that the car/robotic arm moves from the initial position to a desired end position
Many possible input combinations. How to choose?

Additional restrictions through

- Costs (time, energy consumption, forces) \rightarrow should be minimized
- Constraints (obstacles/other cars, maximum forces, maximum time) \rightarrow must not be violated

\Rightarrow Constrained optimization problem
Topic 1: Optimal Control Strategies for Dynamical Systems, such as Autonomous Cars and Robotic Manipulators

- Depending on the system, the computation can be time-consuming
 - Fast results possible for simplified systems
 - Off-line computation
- **Goal:** Find optimal solution for problem
- **Tasks:**
 - Literature review/reading papers about different optimal control approaches
 - Implementing one or more for an example system
 - Comparison of the approaches
Topic 2: Real-Time Near-Optimal Control Strategies for Dynamical Systems, such as Autonomous Cars and Robotic Manipulators

- Computing an optimal solution might take too long for real-time applications
- Often a faster, near-optimal solution is better than a much longer, optimal solution
- **Goal:** Compute a ”good enough” solution in the time given
- **Tasks:**
 - Literature review/reading papers about different real-time, near-optimal control approaches
 - Implementing one or more for an example system
 - Comparison of the approaches
Questions?

Contact:
Bastian Schürmann
MI 03.07.039
bastian.schuermann@in.tum.de