Fault (HW), Defect, Bug (SW)
abnormal condition that may cause a reduction in, or loss of, the capability of a functional unit to perform a required function

Error (revealed fault)
a deviation from the correct value or state

Failure
Failure is defined as deviation from the specification. The designed function can not be executed anymore as specified.

Failure Mode
A function can fail in various ways. In our analysis we pick the failure mode that leads to the failure we investigate.
• Hardware faults can be random or systematic. Software defects are systematic
• Hardware faults can be thought of as physical faults, e.g. a bit flips, a wire breaks. Software defects are mistakes during development
• Faults and defects are dormant until the resource is used (think of a software task that executes specific code for the first time)
• Once it is used it may cause an error which is a deviation from the expected
• The error may make the system deviate from its specification. It is running outside its intended use
Failure Modes

Function:
A process variable is measured (input) and the temperature compensated reading transmitted using a 4 – 20 mA data communication interface (output).

The following failure modes and occurrences are known. What failure modes do influence our design most?

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Failure occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 – 20 mA current signal stuck fail (output)</td>
<td>Low</td>
</tr>
<tr>
<td>4 – 20 mA current signal low fail (output)</td>
<td>Low</td>
</tr>
<tr>
<td>Sensor head fail (input)</td>
<td>Medium</td>
</tr>
<tr>
<td>Power failure</td>
<td>High</td>
</tr>
<tr>
<td>Other</td>
<td>Low</td>
</tr>
</tbody>
</table>
Failure Modes and Effect Analysis (FMEA)

- System FMEA in requirements analysis (proposed system)
 - Also: Design FMEA (existing system)
- What are the failure modes and what is the effect:
 - System failure (e.g. power, communication, timeliness, erroneous) mode assessment
 - Plan how to prevent the failures
- How does it work?
 - Identify potential failure modes and rate the severity (team activity)
 - Evaluate objectively the probability of occurrence of causes and the ability to detect the cause when it occurs
 - Rank failure modes and isolate the most critical ones
FMEA II

- FMEA tools
 - Spreadsheet, proprietary (e.g. Reliasoft Xfmea)
- Risk ratings: 1 (best) to 10 (worst)
 - Severity (SEV) – how significant is the impact
 - Occurance (OCC) – likelihood of occurance
 - Detection (DET) – how likely will the current system detect the failure mode
- Risk Priority Number (RPN)
 - A numerical calculation of the relative risk of a particular failure mode
 - \[\text{RPN} = \text{SEV} \times \text{OCC} \times \text{DET} \]
 - Used to isolate the most risky functions and their failure modes
 - Qualitative approach (risk ratings are relative numbers)
FMEA III

- Function – What is the system going to do (e.g. from QFD)?
- Failure – How could the function fail?
- Effect – What could be the outcome of the failure?
- Cause – What could be the cause of the failure?

<table>
<thead>
<tr>
<th>Function</th>
<th>Failure</th>
<th>Effect</th>
<th>Si</th>
<th>Cause</th>
<th>Qi</th>
<th>Control</th>
<th>Control Type</th>
<th>Di</th>
<th>RPNi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function1</td>
<td>Failure mode 1</td>
<td>Effect 1</td>
<td>2</td>
<td>Cause 1</td>
<td>9</td>
<td>Detection 1</td>
<td>Detection</td>
<td>6</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Failure mode 2</td>
<td>Effect 2</td>
<td>8</td>
<td>Cause 2</td>
<td>2</td>
<td>Detection 2</td>
<td>Detection</td>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Failure mode 3</td>
<td>Effect 3</td>
<td>1</td>
<td>Cause 3</td>
<td>3</td>
<td>Detection 3</td>
<td>Detection</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Function2</td>
<td>Failure mode 1</td>
<td>Effect 1</td>
<td>6</td>
<td>Cause 1</td>
<td>7</td>
<td>Detection 1</td>
<td>Detection</td>
<td>6</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Failure mode 2</td>
<td>Effect 2</td>
<td>1</td>
<td>Cause 2</td>
<td>2</td>
<td>Detection 2</td>
<td>Detection</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>
FMEA Example
- See Whiteboard -

- We will take the software technical specification from QFD and derive possible failures, causes and detection mechanisms.

- The intent here is to specify additional non-functional software requirements.

- When thinking about software failures consider this:

<table>
<thead>
<tr>
<th>Quality</th>
<th>Description of Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>The term accuracy denotes the degree of freedom from error of sensor and operator input, the degree of freedom processed by an approximation or measurement, and the degree of freedom of sensor output from error.</td>
</tr>
<tr>
<td>Capacity</td>
<td>The term capacity denotes the ability of the software system to achieve its objectives within the hardware constraints imposed by the computing system being used. The main factors of capacity are Execution Capacity (timed) and Storage Capacity (timed). These refer, respectively, to the availability of sufficient processing time and memory resources to satisfy the software requirements.</td>
</tr>
<tr>
<td>Functionality</td>
<td>The term functionality denotes the operations which must be carried out by the software. Functions generally transform input information into output information in order to affect the entire operation. Inputs may be obtained from sensors, operators, other equipment or other software as appropriate. Outputs may be directed to sensors, operators, other equipment or other software as appropriate.</td>
</tr>
<tr>
<td>Reliability</td>
<td>The term reliability denotes the degree to which a software system or component operates without failure. This definition does not consider the consequences of failure. Only the existence of failure. Reliability requirements may be derived from the general system reliability requirements by imposing reliability requirements on the software component of the application system which are sufficient to meet the overall system reliability requirements.</td>
</tr>
<tr>
<td>Robustness</td>
<td>The term robustness denotes the ability of a software system or component to function correctly in the presence of invalid inputs or stressful environmental conditions. This includes the ability to function correctly despite some violation of the assumptions in its specification.</td>
</tr>
<tr>
<td>Safety</td>
<td>The term safety is used here to denote those properties and characteristics of the software system that directly affect or are associated with system safety considerations. The other qualities discussed in this table are important contributors to the overall safety of the software-controlled protection system, but are primarily concerned with the internal operation of the software. This attribute is primarily concerned with the effect of the software via system hazards and the measures taken to control these hazards.</td>
</tr>
<tr>
<td>Security</td>
<td>The term security denotes the ability to prevent unauthorized, undesired and unsafe intrusions. Security is a safety concern in so far as much intrusion can affect the safety-related functions of the software.</td>
</tr>
</tbody>
</table>

Source: Software Safety Hazard Analysis, J. Lawrence, LBLL

A. Walsch, IN2244 WS2014/15
Reliability Block Diagram (RBD)

- We need two things to compare different architectures (in EE):
 - A probabilistic model – probability law
 - A notation – Reliability Block Diagram (RBD) which assume probabilistic independent blocks
 - Each block has a defined function, a failure mode with a failure rate
 - A system function can be spread across different blocks (think of blocks as components)

Source:
Smith: Reliability, Maintainability and Risk
RBD Example
- See Whiteboard -
Fault Tree Analysis (FTA)

- Top event is failure mode (system or function)
- Divide system functions into sub-functions (functional decomposition) or system into components (component decomposition)
- Look into combinations of faults (strength of FTA)
- Tree like structure using combinatorial logic
- Paths of Failure

Outcome:
- Root cause event (external, internal) that (in combination) will lead to top event → failure modes of sub-functions or components
- Good system understanding – very useful if applied to existing systems to isolate reliability issues
FTA II

- FTA is semantically equivalent to Reliability Block Diagram (RBD)

Source:
Smith, Functional Safety
FTA Example
- See Whiteboard -