Vorlesung

Grundlagen der

Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Chapter 7 (3rd ed.)

Logical Agents
Questions:

- How was the knowledge represented so far?
- What does a (searching) agent know about the world?
- How is this knowledge applied?
- Where does this knowledge come from?
- Can this knowledge be updated?

Implicit vs. explicit representation
Logical agents

- Knowledge-based agents with internal representation of knowledge
- Reasoning process to gain new knowledge and to draw conclusions
- Representation schemes (languages)
- A knowledge base is a collection of (formal) sentences

Two operators on the knowledge base:
- \text{TELL}(KB, \text{sentence})
- \text{ASK}(KB, \text{sentence})
Logical agents

- Reconsider a general agent scheme (see also chapter 2)
Logical agents

- Two operators on the knowledge base:
 - $\text{TELL}(KB, \text{sentence})$
 - $\text{ASK}(KB, \text{sentence})$
Logical agent: operation principle

```
function KB-AGENT(percept)
returns an action

persistent: KB, a knowledge base
    t, a counter, initially 0 (discrete time)

TELL(KB, MAKE-PERCEPT-SENTENCE((percept, t))
action ← ASK(KB, MAKE-ACTION-QUERY(t)
TELL(KB, MAKE-ACTION-SENTENCE((action, t))
t ← t + 1
return action
```

- The KB contains initially \((t=0)\) the **background knowledge**
- Choice of abstraction level is essential
 - E.g. for finding the way from A to B, no implementational details are needed
Declarative vs. procedural knowledge

- There were intensive discussions about the better form of representation, explicitly or implicitly.

- In real applications, both are useful hybrid approaches.

- Declarative knowledge can often be automatically compiled into procedural code.
Wumpus world

- Single agent in a 4x4 grid (cave)
- There is a beast called Wumpus
- ... and there are pits
- The agent has a bow and a single arrow
- It can turn left or right and move forward 1 field

- Goal: Search for gold in the cave and escape from the cave
- Simple “game“ used to illustrate main concepts of AI
Wumpus world

PEAS description (cont‘d)

Performance:
- +1000 for escaping with the gold from the cave
- -1000 for being “eaten“ by Wumpus or falling in a pit
- -1 for each motion
- -10 for shooting the arrow

Environment
- The grid with start position at [1,1]
- Gold and Wumpus are randomly distributed among the other fields
- Pits with probability 0.2 on each other field
Wumpus world

PEAS description
(Performance, Environment, Actuators, Sensors)

- **Actuators:**
 - Forward, turns left, right (90 deg.)
 - Grab (to get the gold)
 - Shoot (shoot arrow in view direction)
 - Climb (leave cave, only possible on field [1,1])

- **Sensors**
 - At location of the Wumpus + the four grid-neighbors the agent senses a *stench*
 - At the four grid-neighbors of a pit the agent senses a *breeze*
 - At the field where the gold is located, the agent senses a *glitter*
 - If the agent runs into a wall, he senses a bump
 - If the agent kills the Wumpus, a scream can be heared in the cave
Wumpus world
Wumpus world: The environment

Classification of the environment

- Discrete, static, single agent
- Partially observable (only sensing on the current field)
- Sequential (rewards several time steps after an action)

- Agent not able to “win“ in all situations (~ 21% unfair)
 - Gold may be in a room with a pit
 - No way to gold without pits

→ Decision wheter to risk the life
Wumpus world: Simple graphical representation

Sensor percepts described as a vector
[Stench, Breeze, Glitter, Bump, Scream]
Wumpus world: Simple graphical representation

Later steps

After 3rd move with percept
[Stench, None, None, None, None, None]

After 5th move with percept
[Stench, Breeze, Glitter, None, None, None]
Wumpus world: Reasoning

- **Background Knowledge**
 - Agent is at [1,1]
 - [1,1] is safe “OK“
 - All perception and action rules

- **Gained Knowledge**
 - States of fields visited and ist neighbours

- **Reasoning based on logical entailments**

Conclusions drawn from available knowledge (background + percepts) are correct!
Logic

- **Knowledge base**
 - Consists of *sentences* in the *syntax* of the *representation language*

- **Syntax**
 - Well-formed sentences/formulas
 - E.g. “x+y = 4“ vs. “x4y+=“

- **Semantics**
 - Meaning of a sentence
 - Truth in view of each *possible world*
 - In classical logic, each sentence is either true or false in a world

- **Model** is a more precise term for “possible world“
Model

- A model can be seen as a variable assignment
 - E.g. in \(x + y = 4 \) each assignment of \([x, y]\) is a model
 - How many models are possible?

- If a sentence \(\alpha \) is true in a model \(m \) then we say
 \(m \) satisfies \(\alpha \) or \(\alpha \) is a model of \(m \)

- \(M(\alpha) \) is the set of all models of \(\alpha \)
 - i.e., all variable assignments where \(\alpha \) is true
Entailment (logical consequence)

A sentence β is a logical consequence of sentence α

$$\alpha |\!|= \beta$$

This means that in each model where α is true, β is also true

In terms of sets

$$\alpha |\!|= \beta \iff M(\alpha) \subseteq M(\beta) \quad \text{(iff: if and only if)}$$

Or, in other words, the statement α is more strict than the statement β

Example from maths: $x=0 \ |\!|= \ xy=0$
Models in the Wumpus world

- Assumption: Only pits are of interest at the moment

- Agent perceives nothing in [1,1], moves to [2,1] and perceives there a breeze.

- Question: are pits in [1,2], [2,2], [3,1]
 \[2^3 = 8\] possible worlds (models)

- Note, that there is no statement about truth when identifying all possible worlds, it’s just the collection of all variable assignments.
Models in the Wumpus world

Solid line: models consistent with first 2 percepts, i.e. the KB is true, or each sentence in the KB is true

(a) α_1 : No pit at [1,2]
(b) α_2 : no pit at [2,2]
Models in the Wumpus world

In each model, where KB is true, α_1 is also true

$$KB \models \alpha_1 \quad \text{(no pit at [1,2])}$$

$$M(KB) \subseteq M(\alpha_1)$$

Model checking, test whether α is true for all models where KB is true
Models in the Wumpus world

On the other hand, in some of the models where KB is true, α_2 is false, i.e. $KB \not\models \alpha_2$

The agent is not able to conclude, that there is no pit at [2,2], but also not able to conclude that there is a pit at [2,2]
Formal inference

If an inference algorithm i is able to derive α from KB, we write $\text{KB } |\!-\! i \alpha$

Soundness / Correctness
- Property of maintaining truth
- Only derivable sentences are derived

Completeness
- The algorithms is able to derive all derivable sentences
- Compare with completeness of search algorithms, e.g. depth first search
Formal inference

If an inference algorithm i is able to derive α from KB, we write $\text{KB} \vdash_i \alpha$

Soundness / Correctness
- Property of maintaining truth
- Only derivable sentences are derived

Completeness
- The algorithms is able to derive all derivable sentences
- Compare with completeness of search algorithms, e.g. depth first search
Syntax and semantics

If a KB is true in the real world (and the inference is correct), then the derived sentences are also true in the real world.
Symbol grounding

How do we know that a KB is true in the real world?

- Perceptions tell us the truth
- We assume that the a priori knowledge is also true

Complex problem in real applications
Propositional logic (PL)

Syntax:
- Atomic sentences: symbols TRUE, FALSE, variables
- Composite sentences with logical operators
- Grammar in Backus-Naur-Form (BNF)

Sentence → Atomic Sentence | Complex Sentence
Atomic Sentence → TRUE | FALSE | P | Q | R | ...
Complex Sentence → (Sentence) | [Sentence] |
 ¬ Sentence |
 (Sentence ∧ Sentence) |
 (Sentence ∨ Sentence) |
 (Sentence ⇒ Sentence) |
 (Sentence ⇔ Sentence)

Operator sequence: ¬, ∧, ∨, ⇒, ⇔
Propositional logic (PL)

Semantics:
- Truth values for each symbol \rightarrow model
- $\neg P$ is true \iff P is false in m
- $P \land Q$ is true \iff P and Q are true in m
- ...

How many functions for 2 variables are possible?

2 variables \rightarrow 4 states
4 states individually evaluating to true, false $\rightarrow 2^4=16$ possible functions
Propositional logic (PL)

Truth tables for some functions

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(\neg P)</th>
<th>(P \land Q)</th>
<th>(P \lor Q)</th>
<th>(P \Rightarrow Q)</th>
<th>(P \iff Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
A simple KB for the Wumpus world

Rules

- $P_{x,y}$ is true if there is a pit at $[x,y]$
- $W_{x,y}$ is true if Wumpus is at $[x,y]$
- $B_{x,y}$ is true if the agent feels a breeze at $[x,y]$
- $S_{x,y}$ is true if the agent perceives a stench at $[x,y]$

Facts:
- $R_1: \neg P_{1,1}$ There is no pit at $[1,1]$
- $R_2: B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
- $R_3: B_{2,1} \iff (P_{1,1} \lor P_{2,1} \lor P_{3,1})$

These facts are true in all worlds
KB after the first 2 perceptions

- $R_4: \neg B_{1,1}$ There is no breeze at [1,1]
- $R_5: B_{2,1}$

- How to answer to specific questions, such as $KB \models P_{2,2}$?
- Simple inference mechanism
Truth-table based reasoning

KB |= P_{2,2} ?

<table>
<thead>
<tr>
<th>B_{1,1}</th>
<th>B_{2,1}</th>
<th>P_{1,1}</th>
<th>P_{1,2}</th>
<th>P_{2,1}</th>
<th>P_{2,2}</th>
<th>P_{3,1}</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

33
Summary

- Logics as formal representation for knowledge
- Syntax and semantics
- Models (possible worlds)