Vorlesung

Grundlagen der Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 12.11.2012
Chapter 6 (3rd ed.)

Constraint Satisfaction Problems
Constraint Satisfaction Problems

Standard search problems:

- State is a "black box", an arbitrary data structure with goal test operators, evaluation schema and successor function

CSP:

A state is defined by variables X_i with values from a domain D_i. The goal test is a set of constraints that specify the allowable combinations of values for subsets of variables.

Simple example of a formal representation language. Allows useful general-purpose algorithms which are more effective than standard search algorithms.
Example: Map-coloring

Variables: WA, NT, Q, NSW, V, SA, T
Domains: $D_i = \{\text{red}; \text{yellow}; \text{blue}\}$
Constraints: adjacent regions must have different colors e.g. $WA \neq NT$ (if the language allows this), or $(WA; NT) \in \{(\text{red}; \text{yellow}); (\text{red}; \text{blue}); (\text{yellow}; \text{red}); (\text{yellow}; \text{blue}); \ldots\}$
Example: Map-coloring

Solutions are assignments satisfying all constraints, e.g.
\{WA = red, NT = yellow, Q = red, NSW = yellow,
V = red, SA = blue, T = yellow\}
Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search. E.g. Tasmania is an independent subproblem!
Types of CSPs

Discrete variables

- Finite domains; size \(d \Rightarrow O(d^n) \) complete assignments e.g.,
 - Boolean CSPs, incl. Boolean satisfyability (NP-complete)
- Infinite domains (integers, strings, …)
 - e.g., job scheduling, variables are start/end days for each job
 - requires a constraint language, e.g. \(\text{StartJob}_1 + 5 < \text{StartJob}_3 \)
 - linear constraints solvable, nonlinear undecidable

Continuous variables

- e.g. start/end times for Hubble Telescope observations
- linear constraints are solvable in polynomial time by linear programming methods
Varieties of Constraints

- **Unary** constraints involve a single variable
 - e.g., SA ≠ green

- **Binary** constraints involve pairs of variables
 - e.g., SA ≠ WA

- **Higher-order** constraints involve 3 or more variables
 - e.g., cryptarithmetic column constraints
Reducing the Search space with constraints

- In the example: 4 colors possible for each node
- E.g., when assigning SA:= blue, the search space only needs to consider 3 colors:

\[3^5 = 243 \quad \Rightarrow \quad 2^5 = 32 \]

Reduction by 87%:
Constraints in real applications

- Assignment problems
 - e.g., who teaches what class or which robot assembles which part

- Timetabling problems
 - e.g., which class is offered when and where?

- Transportation scheduling

- Factory scheduling
 - Different Tasks, each one modelled as variable

Many real-world problems involve real-valued variables
Constraints in real applications

Example: Assembly of a car

- 15 tasks: 2 axes (front, rear), 4 wheels, fix wheel nuts for all wheels, 4 wheel covers, final inspection

- Assign a variable to each task representing the start time
- Order of tasks, given a max. duration d_i for each task i

Constraint: $T_1 + d_1 \leq T_2$
Constraints in real applications

E.g. assembly of an axis take 10 min.

\[
\begin{align*}
\text{Axis}_F + 10 & \leq \text{Wheel}_{RF} ; \text{Axis}_F + 10 & \leq \text{Wheel}_{LF} \\
\text{Axis}_R + 10 & \leq \text{Wheel}_{RR} ; \text{Axis}_R + 10 & \leq \text{Wheel}_{LR}
\end{align*}
\]

Assembly of a wheel take 1 min for moving wheel to axis, 2 min to fix the wheel nuts, 1 min to mount the wheel caps

\[
\text{Wheel}_{RF} + 1 \leq \text{Nuts}_{RF} ; \text{Nuts}_{RF} + 2 \leq \text{Cap}_{RF}
\]

If there is e.g. only one tool to position the 2 axes, these steps need to be sequentialized (disjunctive constraint)

\[
\text{(Axis}_F + 10 \leq \text{Axis}_R \text{) or (Axis}_R + 10 \leq \text{Axis}_F \text{)}
\]
Solution of CSPs: naive approach

Let's start with the straightforward approach, then fix it.

States are defined by the values assigned so far.

- **Initial state**: the empty assignment `{ }`
- **Successor function**: assign a value to an unassigned variable that does not conflict with current assignment → fail if no legal assignments
- **Goal test**: the current assignment is complete

1. Every solution appears at depth n with n variables → use depth-first search
2. Path is irrelevant, so can also use complete-state formulation
3. $b = (n - \ell)d$ at depth ℓ, hence $n! \cdot d^n$ leaves
Solution of CSPs: Backtracking

Depth first search ist complete for CSPs, since maximally n operators (assignments of values to variables) are possible. naive implementation leads to very high branching factor!

Let D_i be the set of possible values for V_i. The branching factor is then $b = \sum_{i=1..n} D_i$.

The order of instantiation of variables is irrelevant for the solution. Therefore, one can select a variable for every expansion step (non-deterministically), i.e. the branching factor is $(\sum_{i=1..n} D_i) / n$.

After each operator application, one can test if any constraints are violated. In this case the current node does not need to be expanded further.

depth first search + test = Backtracking
Solution of CSPs: Backtracking

```python
function BACKTRACKING-SEARCH( csp ) returns a solution, or failure
    return RECURSIVE-BACKTRACKING( {}, csp )

function RECURSIVE-BACKTRACKING( assignment, csp ) returns a solution, or failure
    if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE( Variables[csp], assignment, csp )
    for each value in ORDER-DOMAIN-VALUES( var, assignment, csp ) do
        if value is consistent with assignment according to Constraints[csp] then
            add { var = value } to assignment
            result ← RECURSIVE-BACKTRACKING( assignment, csp )
            if result ≠ failure then return result
            remove { var = value } from assignment
        return failure
```
Solution of CSPs: Heuristics for CSPs

Minimum remaining values (MRV) first:
- reduces branching factor!

Most constraining variable first (alternatively):
i.e. the variable with the most constraints on remaining variables.
- reduces future branching factor

Least constraining value first:
- allows more freedom for future decisions
 Now, the 1000-Queens problem is solvable!
Example: Cryptoarithmetic puzzles

Variables: F, T, U, W, R, O, C1, C2, C3
Domains: {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
Constraints: alldiff (F;T;U;W; R;O)
O + O = R + 10 * C1;
C1 + W + W = U + 10 * C2;
C2 + T + T = O + 10 * C3;
C3 = F
Use of auxiliary variables

Thesis: Each constraint of higher order (i.e., with multiple variables) in a finite domain can be transformed into a binary constraint set (i.e., each constraint deals with only 2 variables)

Example for trinary constraint: $A + B = C$

Sketch of proof: Auxiliary variable AB: pairs in the form (A,B)
Three constraints:
- A is the first element of (A,B)
- B is the second element of (A,B)
- $\text{EVAL}(ab) = C$, with $\text{EVAL}(ab) = a+b$ for each $ab \in AB$

Constraint descriptions with only binary constraints are possible!
Use of auxiliary variables

Thesis: Each constraint of higher order (i.e., with multiple variables) in a finite domain can be transformed into a binary constraint set (i.e., each constraint deals with only 2 variables)

Example for trinary constraint: \(A + B = C \)

Sketch of proof: Auxiliary variable \(AB \): pairs in the form \((A,B)\)

Three constraints:

A is the first element of \((A,B)\)

B is the second element of \((A,B)\)

\(\text{EVAL}(ab) = C, \)

with \(\text{EVAL}(ab) = a+b \) for each \(ab \in AB \)

Constraint descriptions with only binary constraints are possible!
Forward checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
 -

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
</tbody>
</table>
Forward checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

![Diagram of Forward Checking](image)
Forward checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!

- **Constraint propagation** repeatedly enforces constraints locally
Constraint propagation

Main idea: local consistency

- **Node consistency**: all unitary constraints are satisfied

- **Arc consistency** between X_i and X_j: For each value in D_i exists a value in D_j which fulfills the binary constraint between X_i and X_j

Example: Arc consistency for the constraint $Y = X^2$ in the domain \{0,1, ..., 9\}
This leads to $\text{Dom}(X) = \{0,1,2,3\}$ and $\text{Dom}(Y) = \{0,1,4,9\}$

AC-3 algorithm uses arc consistency
AC-3 algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \(\{X_1, X_2, \ldots, X_n\} \)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)
 if \(\text{RM-INCONSISTENT-VALUES}(X_i, X_j)\) then
 for each \(X_k\) in \text{NEIGHBORS}[X_i] do
 add \((X_k, X_i)\) to queue

function \(\text{RM-INCONSISTENT-VALUES}(X_i, X_j)\) returns true iff remove a value
removed \(\leftarrow false\)
for each \(x\) in \text{DOMAIN}[X_i] do
 if no value \(y\) in \text{DOMAIN}[X_j] allows \((x,y)\) to satisfy constraint\((X_i, X_j)\)
 then delete \(x\) from \text{DOMAIN}[X_i]; \; \text{removed} \leftarrow true
return removed
Example: 8-queen as CSP

- There are 8 variables $V_1; \ldots; V_8$, where V_i represents a queen in the i-th column.

- V_i can take values from \{1; 2; \ldots; 8\}, which represents the row position.

- There are constraints between all pairs of variables which express the rule that no queen can attack any other queen.

 discrete, finite, binary CSP
Example: 8-queen as CSP

Min-conflicts heuristics:
- Choose a conflicting column
- Choose a field with minimal conflicts (attacks), random choice between equal possibilities

Min-conflicts was used for scheduling of the Hubble-Telescope. Reduction of computation time from 3 weeks to 10 minutes!
Using the structure of problems

Topological order of the nodes in case of tree-structured CSPs:
- Tree structure leads to linear time

- Now try to reduce problems to trees
Using the structure of problems

Reduce graphs to trees

- Delete nodes: Assign values to some variables, so that remaining variables form a tree
Using the structure of problems

Tree decomposition: Devide and conquer

- Each variable in the original problem appears in one of the sub-problems
- 2 constrained variables have to appear (with the constraint) in at least one of the sub-problems
- If a variable appears in two sub-problems, it needs to be present in each sub-problem along the connecting path
Using the structure of problems
Summary

- CSPs: state represented by variable-value pairs
- Set of constraints on variables (unary, binary, and higher-order)
- Backtracking = depth first search + test
- Min-conflicts heuristics are very successful and easy
- Reduction of complexity by reduction to trees instead of graphs