Vorlesung
Grundlagen der Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 2.11.2012
Chapter 3

Solving Problems by Searching: Informed (Heuristic) Search
What’ the problem?

Combinatorial explosion:

- Uninformed search leads to exponential time and can only be solved for small problems
 - 15-puzzle: 10^{13} configurations
 - Rubik’s cube: 4×10^{19} configurations
 - 1 million years with 1 turn per second
 - Chess: 10^{120} configurations (assuming ~ 40 moves)

How to solve it?

- Use additional information to reduce complexity
- Choose the node to expand based on an estimation on how fast the goal can be reached
Heuristics and their properties

Make use of domain knowledge:
 „more knowledge, less search“
- Domain knowledge can be considered as „rules of thumb“
- Heuristics are simple rules that evaluate nodes with respect to the distance to the goal
- Good heuristics are
 - Good estimators
 - Simple and fast to compute
Best-first Search

- Information about the costs from a given node to the goal:
 - Evaluation function h, giving a real number for each node
 - Ideal case:
 - Knowing the correct costs from the node to the goal
 - Simple heuristics:
 - Euclidean distance
 - Manhattan distance

- Modify the generic graph-search algorithm using the heuristics

- When h is correct, i.e. estimation gives the actual costs:
 Follow the path of lowest cost, no need to search
Modify generic graph-search algorithm for best-first search

```
function HEURISTIC-SEARCH(problem, h) returns a solution or an error

static: open, the initial state (set of nodes)
        closed, the nodes already visited, initially empty set

forever
    if open is empty then return error
    take a node out of open
    add this node to closed
    if this node contains a goal state then return solution
    expand this node (i.e. take all successors not in closed)
    add successor nodes to open using h
```

- Way of adding successor nodes defined by the heuristics
Greedy best-first search

- The “goodness“ of a node is determined by the distance to the goal
 \[h(n) = \text{estimated distance from node } n \text{ to the goal} \]
- Constraint for \(h \): \(h(n) = 0 \), if \(n \) is a goal node
- In path planning: Direct distance between two locations
Greedy best-first search: From Arad to Bucharest

Air-line distances to Bucharest

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitești</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vîlcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timișoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy best-first search: From Arad to Bucharest

Use air-line distance as heuristic function h
Heuristics

- In case of greedy search, the *evaluation function* h is called a *heuristic function* or simply *heuristic*
- Name comes from greek εὑρίσκειν (to find, „Eureka!“)

- In AI:
 - Heuristics are fast, but probably incomplete methods for solving problems [Newell, Shaw, Simon 1963]
 - Heuristics are a means to accelerate search in average case

- A heuristic is problem-specific and focused on search
A* algorithm

- Minimizes the estimated path costs
- Combines uniform cost search and best first greedy

\[g(n): \text{cost so far to reach } n \]
\[h(n): \text{estimated cost from } n \text{ to a goal node} \]
\[f(n) = g(n) + h(n): \text{estimated total path cost through } n \]

Let \(h^* \) be the true cost of an optimal path from \(n \) to goal

\(h \) is admissible, if for all nodes \(n \):

\[h(n) \leq h^*(n) \]

\(h \) is optimistic, \(h \) never overestimates the actual costs
A*: From Arad to Bucharest

Air-line distances to Bucharest

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance to Bucharest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
A*: From Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Rimnicu Vilcea
A*: From Arad to Bucharest

(e) After expanding Fagaras

(f) After expanding Pitesti
A* algorithm: properties

h is **admissible**, if for all nodes n: $h(n) \leq h^*(n)$

A (slightly) more strict condition:

Consistency (monotony):

h is **consistent**, if for all nodes n:

$$h(n) \leq c(n,a,n') + h(n')$$

where $c(n,a,n')$ *are the costs from node* n *to a successor node* n' *as a result of the action* a

Thesis: If h is consistent, then h is also admissible
A* algorithm: properties

Two versions of A*:
- Tree-search based
- Graph-search based

Theorem: A* is optimal if
- h is admissible in case of tree-search based A*
- h is consistent in case of graph-search based A*
A* algorithm: Optimality of tree-search form

Thesis: A* is optimal, i.e. the first solution found by A* has minimal costs

Proof: Assume there exists a goal node G with optimal path costs f^*, but A* has found a different goal G_2 with $g(G_2) > f^*$
A* algorithm: Optimality of tree-search form

Let n be a node on the optimal path from start to G which has not been expanded. Since h is admissible,

$$f(n) \leq f^*.$$

But because n hasn’t been expanded before G_2, it holds that

$$f(G_2) \leq f(n)$$

From this it follows that

$$f(G_2) \leq f^*.$$

Because $h(G_2) = 0$ by definition, it follows that

$$g(G_2) \leq f^*.$$

\rightarrow to assumption $g(G_2) > f^*$. Proof by contradiction.
A* algorithm: Optimality of graph-search form

If h is consistent, the values of $f = g + h$ are monotonically increasing (not strictly).

Let n' be a successor node of n. For an action a holds

$$g(n') = g(n) + c(n,a,n')$$

This leads to

$$f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \geq g(n) + h(n) = f(n)$$
A* algorithm: Optimality of graph-search form

If \(h \) is consistent, the values of \(f = g + h \) are monotonically increasing (not strictly).

Let \(n' \) be a successor node of \(n \). For an action \(a \) holds
\[
g(n') = g(n) + c(n, a, n')
\]
This leads to
\[
f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') \geq g(n) + h(n) = f(n)
\]

Now to prove: If a node \(n \) was chosen for expansion, then the optimal path to \(n \) has been found.
A* algorithm: Optimality of graph-search form

Assume there is another cheaper path from \textit{start} to \textit{n}.

Then there is a node \textit{n'} on that path with \(f(n') < f(n) \) because of monotony of \(f \) along any path.

Contradiction to algorithm definition: \textit{n'} would have been chosen instead of another node in the same set of frontier nodes because its costs are lower.

Then, taking \(h(\text{goal})=0 \) into account, the function \(f \) gives the true cost for any goal and the costs for all other nodes on the way are at least as expensive.
A* algorithm: Optimality of graph-search form

We can draw a “contour map“ with nodes within a f-cost limit
A* algorithm: Properties

- A* expands all nodes with $f(n) < C^*$
 - C^* are the costs of an optimal path
- Completeness requires that there is only a finite number of nodes with $f(n) < C^*$
 - True, if step costs $> \varepsilon > 0$ and branching factor b is finite
- No node with $f(n) > C^*$ is expanded
- If not all nodes with $f(n) < C^*$ are expanded, an algorithm risks to miss the optimal solution
A* algorithm: Properties

- A* is complete
- A* is optimal
- But: Number of configurations still exponential, even with pruning!
- Time exponential, but drastically reduced
- Space is the major problem

- Variation of A*: IDA* (Iterative deepening A*)
 - Pruning based on f-costs (g+h) instead of d
 - Because of iteration: no need to keep track of priority queue
Summary

- There are optimal and complete search algorithms which are “much better” than blind search.
- However, the state spaces and the complexity is still exponential.

- A* always leads to optimal solutions, but space is a problem.
 - Variations of A* to save space.
Questions:

Restriction of costs to positive values:

a) Why would an optimal algorithm need to expand the whole space in case of arbitrary negative costs?

b) Does a restriction to $c(n,a,n') > \min \text{ (negative val.)}$ help?
 - In case of trees and in case of graphs?

c) Assume there are loops and the world state is the same after a finite number of actions. What is the optimal strategy in case of negative path costs for all actions?

d) Are there negative costs in real life?
Questions:

True or false?

a) Depth-first expands always at least as many nodes as A* with an admissible heuristic.

b) For the 8-puzzle, h(n) = 0 is admissible.

c) A* is not suitable for robotics, because percepts, actions, and states deal with continuous values.

d) In chess, a rook (Turm) can move only horizontally or vertically, but not jump over other chessmen. The manhattan distance is admissible for a move from A zu B.
Questions:

In graph-based A*, there can be state spaces with suboptimal solutions if h is admissible, but not consistent. Show an example.