Chapter 3

Solving Problems by Searching
What’ the problem?

- Assumption: An agent has a goal
 - Described by set of desired states of the world

- How to reach the goal?

- Identify an appropriate formulation of the problem
 - What is the right level of abstraction?
Characteristics of the problem

- **Observable**
 - The agent can determine the current state

- **Discrete**
 - Only a finite set of possible actions in each state
 - n ways at each crossing

- **Environment fully known**
 - Knowing the result of each action
 - Next town known for each way

- **Deterministic**
 - Exactly one result for each action
What's the solution?

- A solution to a problem as described is a fixed sequence of actions
 - Final state is the goal state

- After knowing the solution, the action sequence could be carried out
 - Does this always lead to the goal state?
Simple problem-solving agent

function `SIMPLE-PROBLEM-SOLVING-AGENT(percept)`
returns an action

static:
- `seq`, an action sequence
- `state`, some description of the current world state
- `goal`, a goal
- `problem`, a problem formulation

```
state ← UPDATE-STATE(state, percept)
if seq is empty then
  goal ← FORMULATE-GOAL(state)
  problem ← FORMULATE-PROBLEM (state, goal)
  seq ← SEARCH (problem)
  if seq = failure then return NoOp
action ← FIRST(seq)
seq ← REST(seq)
return action
```
Formal description of a problem

Components

- Initial state
- Set of possible actions for each state s: ACTIONS(s)
- Transition model RESULT(s,a) defining the successor state
 - This defines the state space
 - Forms a directed graph
 - Path: A sequence of states connected by a sequence of actions
- Goal test, sometimes only properties of a goal state given
 - E.g. checkmate
Formal description of a problem

Measuring effectiveness and efficiency:

- Does the method find a solution at all?
- Is it a good solution (low path cost)?
 - Path cost function (e.g. sum of costs for each action)
 - Measure of quality of a solution
 - Step costs defined by \(c(s_i, a, s_j) \)

But that’s not all:

- What is the search cost?
- The total cost = search cost + path cost
 - may not be commensurate!
Formulating problems

Abstraction needed: Real world is absurdly complex

- As few details as possible
 - “Turn right“ instead of “change the angle of the steering wheel by 37.3 deg. within a period of 5 sec.“

- \textit{Valid} abstraction: Each abstract solution can be expanded to one in a more detailed world

- \textit{Useful} abstraction: Execution of an action is more simple than in the original problem formulation
Examples

- Good old-fashioned AI (GOFAI): toy problems, games, theorem proving, etc.
 - Chess, checkers
 - n-queens problem
 - Missionaries and cannibals
 - 8-puzzle
 - Traveling salesman problem (TSP)

- The techniques can be applied to real-world problems:
 - Route-finding in airline travel planners
 - (real) Travelling Salesman Problem
 - VLSI layout (cell layout and channel routing)
 - “intelligent” manufacturing (assembly sequencing)
Vacuum world: Problem formulation

- **States**: agent position, state (clean, dirty) of each cell
 - 2 fields only: $2 \times 2^2 = 8$ states
 - n fields: $n \times 2^n$ states

- **Initial state**: can be defined, each field possible
- **Actions**: left, right, suck
- **State transition model** shown in graph
- **Goal test**: all fields clean
- **Path cost**: each action costs 1 unit
Vacuum world
8-puzzle

Which abstraction is valid and useful?

In general: n-puzzle

<table>
<thead>
<tr>
<th>n</th>
<th>Field size</th>
<th>Number of states</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3x3</td>
<td>$9! / 2 = 181440$</td>
</tr>
<tr>
<td>15</td>
<td>4x4</td>
<td>$1.3e12$</td>
</tr>
<tr>
<td>24</td>
<td>5x5</td>
<td>$1e25$</td>
</tr>
</tbody>
</table>
8-puzzle

- States: position of the numbers and the empty field
- Initial state: can be defined

- Actions: easiest formulation:
 Movement of empty field
- State transition model shown in graph

- Goal test: state equal to given goal state?

- Path cost: each action costs 1 unit
Another example: 8 queens
8 queens: Problem formulations

2 possibilities: incremental vs. complete

<table>
<thead>
<tr>
<th></th>
<th>Incremental</th>
<th>complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td>Position of i queens</td>
<td>Position of n queens</td>
</tr>
<tr>
<td>Initial state</td>
<td>Empty field</td>
<td>All queens distributed</td>
</tr>
<tr>
<td>Action</td>
<td>Add queen</td>
<td>Move queen</td>
</tr>
<tr>
<td>Transition</td>
<td>New state, i+1 queens</td>
<td>New state, 8 queens</td>
</tr>
<tr>
<td>Goal test</td>
<td>8 queens on the field, none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>attacked</td>
<td></td>
</tr>
<tr>
<td>Problem size</td>
<td>2057</td>
<td>64x63x62x…x57= 1e14</td>
</tr>
</tbody>
</table>

Good abstraction using incremental view:
- State: i queens, one per column in i most left columns
- Transition: add queen in most left empty column
A real-world problem

- How to get from Arad to Bucharest?
How to solve these problems?

- Search trees, nodes represent states
General search algorithm

function `GENERAL-TREE-SEARCH(problem)`

returns a solution or an error

static: `open`, the set of frontier nodes, initialized with root node

forever

if `open` is empty then return error

take a node out of `open`

if this node contains a goal state then return solution

expand this node (i.e. take all successors)

add resulting nodes (successors) to `open`
How to solve these problems?

- Search trees, nodes represent states
General search algorithm avoiding loops

```
function GENERAL-GRAph-Search(problem) returns a solution or an error

static: open, the set of frontier nodes, initialized with root node
        closed, the nodes already visited, initially empty set

forever
    if open is empty then return error
    take a node out of open
    add this node to closed
    if this node contains a goal state then return solution
    expand this node (i.e. take all successors not in closed)
    add resulting nodes (successors) to open
```
Graph search

- Each path from initial state to an unexplored state has to cross the border described by open. Open set forms a separator
Graph search: data structures

- Nodes described by attributes:
 - State
 - Parent
 - Action
 - Path-cost
 - Depth

- Nodes can be stored in queues (FIFO, LIFO, prioritized)

Operators:
- **EMPTY?** *(queue)*
- **POP** *(queue)*
- **INSERT** *(element, queue)*
Criteria for choosing an algorithm

- Completeness: Does the algorithms find a solution if one exists?
- Optimality: Does the algorithm find the optimal solution (lowest path cost)?
- Time complexity: How long does it take to find a solution?
- Space complexity: How much memory is needed?

- Complexity in theoretical CS described for \(|V| + |E|\)
 - Number of edges plus number of vertices
- Complexity of infinite search spaces?
 - Often the case in AI
Criteria for choosing an algorithm

- Complexity of AI problems often described by 3 numbers
 - b: branching factor, i.e. max. or avg. number of successors
 - d: depth, i.e. number of steps from the root to the “lowest” leaf
 - m: maximum length of any path in the search space

- Consideration of search costs or the total with action costs
Search strategies

- Uninformed vs. informed search
Uninformed or blind search

- Another look at the graph-search algorithm

function **GENERAL-GRAPH-SEARCH**(problem)
returns a solution or an error

static: open, the initial state (set of nodes)
 closed, the nodes already visited, initially empty set

forever
 if open is empty then return error
 take a node out of open
 add this node to closed
 if this node contains a goal state then return solution
 expand this node (i.e. take all successors not in closed)
 add resulting nodes (successors) to open

- Degree of freedom: way of adding successor nodes
Uninformed or blind search

- No information about length or costs of a path
 - Breadth-first
 - Depth-first
 - Uniform-cost
 - Depth-limited
 - Iterative deepening
 - Bi-directional
Breadth-first search

- Add nodes at the end of the open queue
- Search Pattern: “spread before dive”

open

- (A)
- (B, C)
- (C, D, E)
- (D, E, F, G)

initial state

Optimization: test for goal state already when node created
Breadth-first search

- Completeness?
 - Yes, if deepest node at finite depth d
- Optimal?
 - Yes, if uniform step costs
- Time complexity:
 - \(b + b^2 + b^3 + \ldots + b^d = O(b^d) \)
- Space complexity
 - \(O(b^d) \)

- What if no uniform step costs?
Uniform-cost search

- Idea: store new nodes in priority queue

(Sibiu-0)
(Riminiu Vilcea-80, Fagaras-99)
(Fagaras-99, Pitesti-177)
(Pitesti-177, Bucharest-310)
(Bucharest-278)
Uniform-cost search

- Completeness?
 - Yes, if b finite and step costs $c \geq \varepsilon > 0$ for all actions

- Optimal?
 - Yes

- Time complexity:
 - $O(b^{1+C^*/\varepsilon})$, with C^*: cost of the optimal solution,
 $\varepsilon > 0$: min. action cost

- Space complexity
 - $O(b^{1+C^*/\varepsilon})$
Depth-first search

- Add nodes at the front of the open queue
- Search Pattern: “dive before spread”
Depth-first search

- Add nodes at the front of the open queue

```
open
(J,K,C)  (K,C)  (C)
(F,G)    (L,M,G) (M,G)
```
Depth-first search

- Completeness?
 - No

- Optimal?
 - No

- Time complexity:
 - $O(b^m)$

- Space complexity
 - $O(bm)$
Depth-limited search

- Treat nodes with depth $\geq d_{\text{max}}$ as if no successors
- $d_{\text{max}} \rightarrow \infty$ leads to depth-first search

- Completeness?
 - No
- Optimal?
 - No
- Time complexity:
 - $O(b^{d_{\text{max}}})$
- Space complexity
 - $O(b \cdot d_{\text{max}})$
Iterative deepening depth-first search
Iterative deepening depth-first search

- Repetition of search for the upper levels, can be ignored
- Preferred choice for large search spaces and unknown depth

- Completeness?
 - Yes, if b finite

- Optimal?
 - Yes, if uniform step costs

- Time complexity:
 - $O(b^d)$

- Space complexity
 - $O(b \cdot d)$
Bi-directional search

How to check for solution?
Test for non-empty intersection set of open

- Completeness?
 - Yes, if b finite and breadth-first in both directions
- Optimal?
 - Yes, if uniform step costs and breadth-first in both directions
- Time complexity:
 - $O(b^{d/2})$, much better than breadth-first because $2 \times b^{d/2} << b^d$
- Space complexity
 - $O(b^{d/2})$
Bi-directional search

Problems:

- Operators are not always or only very difficultly invertible (computation of parent nodes)
- In some cases there exist many goal states, which are described only partially. Example: predecessor state of "checkmate".
- One needs efficient procedures in order to test whether the search procedures have met
- Which search method should one use for each direction?
Summary

- In order to search for a solution, an agent has to define its goal and based on this the agent has to define its problem.
- A problem consists of 5 parts: state space, initial state, operators, goal test and path costs. A path from the initial state to a goal state is a solution.
- There exists a general search algorithm that can be used to find solutions. Special variants of the algorithm make use of different search strategies.
Summary

- Search algorithms are evaluated on the basis of the following criteria:
 - completeness, optimality, time- and space complexity.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^d)$</td>
<td>$O(b^{1+C*/\epsilon})$</td>
<td>$O(b^m)$</td>
<td>$O(b^d_{\text{max}})$</td>
<td>$O(b^d)$</td>
<td>$O(b^{d/2})$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^d)$</td>
<td>$O(b^{1+C*/\epsilon})$</td>
<td>$O(bm)$</td>
<td>$O(b^d_{\text{max}})$</td>
<td>$O(bd)$</td>
<td>$O(b^{d/2})$</td>
</tr>
<tr>
<td>Optimal</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>