Vorlesung
Grundlagen der
Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 14.1.2013
Chapter 14

Probabilistic Reasoning
Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:
 \[P(X_i | \text{Parents}(X_i)) \]

- In the simplest case, conditional distribution represented as a **conditional probability table** (CPT) giving the distribution over \(X_i \) for each combination of parent values. This quantifies the effect of the parents on the node.
Example

- Topology of network encodes conditional independence assertions:

 - *Weather* is independent of the other variables
 - *Toothache* and *Catch* are conditionally independent given *Cavity*
Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call
Example contd.
Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values.
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just $1-p$).
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers.
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution.
- For burglary net, $1 + 1 + 4 + 2 + 2 = 10$ numbers (vs. $2^5-1 = 31$).
The full joint distribution is defined as the product of the local conditional distributions:

\[P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | \text{Parents}(X_i)) \]

e.g., \(P(j \land m \land a \land \neg b \land \neg e) \)

\[= P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e) \]

\[= 0.90 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \]

\[\approx 0.00063 \]
Constructing Bayesian networks

1. Choose an ordering of variables X_1, \ldots, X_n
2. For $i = 1$ to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that
 \[P(X_i \mid Parents(X_i)) = P(X_i \mid X_1, \ldots, X_{i-1}) \]
 with $Parents(X_i) \subseteq \{X_1, \ldots, X_{i-1}\}$

This choice of parents guarantees:

\[
P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid X_1, \ldots, X_{i-1})
\]

(chain rule)

\[
= \prod_{i=1}^{n} P(X_i \mid Parents(X_i))
\]

(by construction)
Example

Suppose we choose the ordering M, J, A, B, E.

$P(J \mid M) = P(J)$?
Example

Suppose we choose the ordering M, J, A, B, E

$P(J \mid M) = P(J)$? No

$P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$?
Example

Suppose we choose the ordering M, J, A, B, E

$P(J \mid M) = P(J)\ ? \ No$

$P(A \mid J, M) = P(A \mid J)\ ? \ P(A \mid J, M) = P(A)\ ? \ No$

$P(B \mid A, J, M) = P(B \mid A)\ ?$

$P(B \mid A, J, M) = P(B)\ ?$
Example

Suppose we choose the ordering M, J, A, B, E

\[P(J | M) = P(J) ? \text{No} \]
\[P(B | A, J, M) = P(B | A) ? \text{Yes} \]
\[P(B | A, J, M) = P(B) ? \text{No} \]
\[P(E | B, A, J, M) = P(E | A) ? \]
\[P(E | B, A, J, M) = P(E | A, B) ? \]
Example

Suppose we choose the ordering M, J, A, B, E

\[P(J \mid M) = P(J) \text{? No} \]
\[P(A \mid J, M) = P(A \mid J) \text{? } P(A \mid J, M) = P(A) \text{? No} \]
\[P(B \mid A, J, M) = P(B \mid A) \text{? Yes} \]
\[P(B \mid A, J, M) = P(B) \text{? No} \]
\[P(E \mid B, A, J, M) = P(E \mid A) \text{? No} \]
\[P(E \mid B, A, J, M) = P(E \mid A, B) \text{? Yes} \]
Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: $1 + 2 + 4 + 2 + 4 = 13$ numbers needed
Example contd.

Even worse structure if order is M, J, E, B, A
Structure and conditional independence

a) Local semantics: each node is conditionally independent of its nondescendants given its parents

b) Topological semantics: each node is conditionally independent of all others given its Markov blanket: parents + children + children’s parents
Compact conditional distributions

- CPT grows exponentially with number of parents
- CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly
 Deterministic nodes are the simplest case:
 \[X = f(\text{Parents}(X)) \text{ for some function } f \]

E.g., Boolean functions
 NorthAmerican \iff Canadian \lor US \lor Mexican

E.g., numerical relationships among continuous variables
 \[
 \frac{\partial \text{Level}}{\partial t} = \text{inflow} + \text{precipitation} - \text{outflow} - \text{evaporation}
 \]
Compact conditional distributions contd.

- Noisy-OR distributions model multiple noninteracting causes
 - 1) Parents U_1, \ldots, U_k include all causes (can add leak node)
 - 2) Independent failure probability q_i for each cause alone

$$P(X_i|\text{Parents}(X_i)) = 1 - \prod_{j: x_j=\text{true}} q_i$$

<table>
<thead>
<tr>
<th>Cold</th>
<th>Flu</th>
<th>Malaria</th>
<th>$P(\text{Fever})$</th>
<th>$P(\neg \text{Fever})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.98</td>
<td>0.02 = 0.2 × 0.1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.94</td>
<td>0.06 = 0.6 × 0.1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.88</td>
<td>0.12 = 0.6 × 0.2</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.988</td>
<td>0.012 = 0.6 × 0.2 × 0.1</td>
</tr>
</tbody>
</table>

Number of parameters linear in number of parents
Summary

- Bayes nets provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for (non)experts to construct
- Canonical distributions (e.g., noisy-OR) = compact representation of CPTs