Vorlesung
Grundlagen der Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13
17.12.2012
Chapter 10 (3rd ed.)

Classical Planning
Planning

- The Planning problem
- Planning with State-space search
- Partial-order planning
- Planning graphs
- Planning with propositional logic
- Analysis of planning approaches
What is Planning

- Generate sequences of actions to perform tasks and achieve objectives.
 - States, actions and goals

- Search for solution over abstract space of plans.

- Assists humans in practical applications
 - design and manufacturing
 - games
 - space exploration
 - Rescue operation (see also RoboCup rescue league)
Difficulty of real world problems

- Assume a problem-solving agent using some search method …
 - Which actions are relevant?
 - Exhaustive search vs. backward search
 - What is a good heuristic functions?
 - Good estimate of the cost of the state?
 - Problem-dependent vs. -independent
 - How to decompose the problem?
 - Most real-world problems are nearly decomposable.
Planning language

- What is a good language?
 - Expressive enough to describe a wide variety of problems.
 - Restrictive enough to allow efficient algorithms to operate on it.
 - Planning algorithm should be able to take advantage of the logical structure of the problem.

- STRIPS, ADL, and PDDL
General language features

- **Representation of states**
 - Decompose the world in logical conditions and represent a state as a *conjunction of positive literals*.
 - Propositional literals: $Poor \land Unknown$
 - First Order-literals (grounded and function-free): $At(Plane1, Melbourne) \land At(Plane2, Sydney)$
 - Closed world assumption

- **Representation of goals**
 - Partially specified state and represented as a *conjunction of positive ground literals*
 - A goal is *satisfied* if the state contains all literals in goal.
General language features

- Representations of actions
 \[\text{Action} = \text{PRECOND} + \text{EFFECT} \]
 \[
 \text{Action}(\text{Fly}(p, \text{from}, \text{to}), \\
 \text{PRECOND}: \text{At}(p, \text{from}) \land \text{Plane}(p) \land \text{Airport}(\text{from}) \land \text{Airport}(\text{to}) \\
 \text{EFFECT}: \neg\text{At}(p, \text{from}) \land \text{At}(p, \text{to}))
 \]

 = action schema (\textit{p}, \textit{from}, \textit{to} need to be instantiated)

 - Action name and parameter list
 - Precondition (conj. of function-free literals)
 - Effect (conj. of function-free literals)

- Add-list vs. delete-list in Effect
Language semantics?

How do actions affect states?

- An action is applicable in any state that satisfies the precondition.

- For FO action schema applicability involves a substitution θ for the variables in the PRECOND.

 \[
 \begin{align*}
 At(P1,JFK) \land At(P2,SFO) \land Plane(P1) \land Plane(P2) \land \\
 Airport(JFK) \land Airport(SFO)
 \end{align*}
 \]

 Satisfies : $At(p,\text{from}) \land Plane(p) \land Airport(\text{from}) \land \\
 Airport(\text{to})$

 With $\theta = \{p/P1, \text{from}/JFK, \text{to}/SFO\}$

 Thus the action is applicable.
Language semantics?

- The result of executing action \(a \) in state \(s \) is the state \(s' \)
 - \(s' \) is same as \(s \) except
 - Any positive literal \(P \) in the effect of \(a \) is added to \(s' \)
 - Any negative literal \(\neg P \) is removed from \(s' \)

\[
\text{At}(P1,SFO) \land \text{At}(P2,SFO) \land \text{Plane}(P1) \land \text{Plane}(P2) \land \\
\text{Airport}(JFK) \land \text{Airport}(SFO)
\]

- STRIPS assumption: (avoids representational frame problem)

 every literal NOT in the effect remains unchanged
Expressiveness and extensions

- STRIPS is simplified
 - Important limit: function-free literals
 - Allows for propositional representation
 - Closed-world assumption

- Function symbols lead to infinitely many states and actions

- Open-world extension: Action Description language (ADL)
 \[
 \text{Action}(\text{Fly}(p: \text{Plane}, \text{from}: \text{Airport}, \text{to}: \text{Airport}),
 \text{PRECOND}: \text{At}(p, \text{from}) \land (\text{from} \neq \text{to})
 \text{EFFECT}: \neg\text{At}(p, \text{from}) \land \text{At}(p, \text{to}))
 \]

Standardization: *Planning domain definition language (PDDL)*
- Developed for 1998/2000 International Planning Competition (IPC)
Example: air cargo transport

\[\text{Init}(\text{At}(C1, SFO) \land \text{At}(C2, JFK) \land \text{At}(P1, SFO) \land \text{At}(P2, JFK) \land \text{Cargo}(C1) \land \text{Cargo}(C2) \land \text{Plane}(P1) \land \text{Plane}(P2) \land \text{Airport}(JFK) \land \text{Airport}(SFO))\]

\[\text{Goal}(\text{At}(C1, JFK) \land \text{At}(C2, SFO))\]

\[\text{Action}((\text{Load}(c, p, a))\]

\[\text{PRECOND: } \text{At}(c, a) \land \text{At}(p, a) \land \text{Cargo}(c) \land \text{Plane}(p) \land \text{Airport}(a)\]

\[\text{EFFECT: } \neg \text{At}(c, a) \land \neg \text{At}(p, a) \land \text{In}(c, p)\]

\[\text{Action}((\text{Unload}(c, p, a))\]

\[\text{PRECOND: } \text{In}(c, p) \land \text{At}(p, a) \land \text{Cargo}(c) \land \text{Plane}(p) \land \text{Airport}(a)\]

\[\text{EFFECT: } \text{At}(c, a) \land \neg \text{In}(c, p)\]

\[\text{Action}(\text{Fly}(p, from, to))\]

\[\text{PRECOND: } \text{At}(p, from) \land \text{Plane}(p) \land \text{Airport}(from) \land \text{Airport}(to)\]

\[\text{EFFECT: } \neg \text{At}(p, from) \land \text{At}(p, to)\]

\[\text{[Load}(C1, P1, SFO), \text{Fly}(P1, SFO, JFK), \text{Load}(C2, P2, JFK), \text{Fly}(P2, JFK, SFO)]\]
Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare, trunk))
Goal(At(Spare, Axle))
Action(Remove(Spare, Trunk))
 PRECOND: At(Spare, Trunk)
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))
Action(Remove(Flat, Axle))
 PRECOND: At(Flat, Axle)
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))
Action(PutOn(Spare, Axle))
 PRECOND: At(Spare, Groundp) ∧ ¬At(Flat, Axle)
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground))
Action(LeaveOvernight(), PRECOND: <none>)
 EFFECT: ¬At(Spare, Ground) ∧ ¬At(Spare, Axle) ∧ ¬At(Spare, trunk)
 ∧ ¬At(Flat, Ground) ∧ ¬At(Flat, Axle)

This example goes beyond STRIPS: negative literal in pre-condition
Example: Blocks world

Init(On(A, Table) \land On(B, Table) \land On(C, A) \land Block(A) \land Block(B) \land Block(C) \land Clear(B) \land Clear(C))

Goal(On(A, B) \land On(B, C))

Action(Move(b, x, y)
 \hspace{1cm} \text{PRECOND: } On(b, x) \land Clear(b) \land Clear(y) \land Block(b) \land (b \neq x) \land (b \neq y) \land (x \neq y)
 \hspace{1cm} \text{EFFECT: } On(b, y) \land Clear(x) \land \neg On(b, x) \land \neg Clear(y))

Action(MoveToTable(b, x)
 \hspace{1cm} \text{PRECOND: } On(b, x) \land Clear(b) \land Block(b) \land (b \neq x)
 \hspace{1cm} \text{EFFECT: } On(b, Table) \land Clear(x) \land \neg On(b, x))
Planning with state-space search

- Both forward and backward search possible

- Progression planners
 - forward state-space search
 - Consider the effect of all possible actions in a given state

- Regression planners
 - backward state-space search
 - To achieve a goal, what must have been true in the previous state.
Progression and regression
Progression algorithm

- Formulation as state-space search problem:
 - Initial state = initial state of the planning problem
 - Literals not appearing are false
 - Actions = those whose preconditions are satisfied
 - Add positive effects, delete negative
 - Goal test = does the state satisfy the goal
 - Step cost = each action costs 1

- No functions … any graph search that is complete is a complete planning algorithm.

- Inefficient: (1) irrelevant action problem (2) good heuristic required for efficient search
Regression algorithm

- How to determine predecessors?
 - What are the states from which applying a given action leads to the goal?

 Goal state = $\text{At}(C1, B) \land \text{At}(C2, B) \land \ldots \land \text{At}(C20, B)$

 Relevant action for first conjunct: $\text{Unload}(C1, p, B)$

 Works only if pre-conditions are satisfied.

 Previous state = $\text{In}(C1, p) \land \text{At}(p, B) \land \text{At}(C2, B) \land \ldots \land \text{At}(C20, B)$

 Subgoal $\text{At}(C1, B)$ should not be present in this state.

- Actions must not undo desired literals (consistent)

- Main advantage: only relevant actions are considered.
 - Often much lower branching factor than forward search.
Regression algorithm

- General process for predecessor construction
 - Give a goal description G
 - Let A be an action that is relevant and consistent
 - The predecessors is as follows:
 - Any positive effects of A that appear in G are deleted.
 - Each precondition literal of A is added, unless it already appears.

- Any standard search algorithm can be added to perform the search.

- Termination when predecessor satisfied by initial state.
 - In FO case, satisfaction might require a substitution.
Heuristics for state-space search

- Neither progression or regression are very efficient without a good heuristic.
 - How many actions are needed to achieve the goal?
 - Exact solution is NP hard, find a good estimate

- Approaches to find admissible heuristics: Find optimal solution to relaxed problems
 - Heuristic: Remove all preconditions from actions
 - Heuristic: Ignore Delete-List

- Use the subgoal independence assumption:
 The cost of solving a conjunction of subgoals is approximated by the sum of the costs of solving the subproblems independently.
Partial-order planning

- Progression and regression planning are *totally ordered plan search* forms.
 - They cannot take advantage of problem decomposition.
 - Decisions must be made on how to sequence actions on all the subproblems

- Least commitment strategy:
 - Delay choice during search
Shoe example

Goal(RightShoeOn \land LeftShoeOn)
Init()
Action(RightShoe, \quad \text{PRECOND: RightSockOn}
 \quad \text{EFFECT: RightShoeOn})
Action(RightSock, \quad \text{PRECOND: <none>}
 \quad \text{EFFECT: RightSockOn})
Action(LeftShoe, \quad \text{PRECOND: LeftSockOn}
 \quad \text{EFFECT: LeftShoeOn})
Action(LeftSock, \quad \text{PRECOND: <none>}
 \quad \text{EFFECT: LeftSockOn})

Planner: combine two action sequences (1)leftsock, leftshoe (2)rightsock, rightshoe
Partial-order planning

- Any planning algorithm that can place two actions into a plan without which comes first is a Partially Ordered Plan.
Partial-order planning as a search problem

- States are (mostly unfinished) plans.
 - The empty plan contains only start and finish actions.

- Each plan has 4 components:
 1. A set of actions (steps of the plan)
 2. A set of ordering constraints: A < B
 - Cycles represent contradictions.
 3. A set of causal links
 - The plan may not be extended by adding a new action C that conflicts with the causal link. (if the effect of C is ¬p and if C could come after A and before B)
 4. A set of open preconditions.
 - If precondition is not achieved by action in the plan.
Partial-order planning as a search problem

- A plan is consistent iff there are no cycles in the ordering constraints and no conflicts with the causal links.

- A consistent plan with no open preconditions is a solution.

- A partial order plan is executed by repeatedly choosing any of the possible next actions.
 - This flexibility is a benefit in non-cooperative environments.
Solving Partial-order planning

Assume propositional planning problems:

- The initial plan contains \textit{Start} and \textit{Finish}, the ordering constraint \textit{Start} < \textit{Finish}, no causal links, all the preconditions in \textit{Finish} are open.

- Successor function:
 - picks one open precondition p on an action B and
 - generates a successor plan for every possible consistent way of choosing action A that achieves p.

- Test goal
Enforcing consistency

When generating successor plan:

- The causal link $A \rightarrow p \rightarrow B$ and the ordering constraint $A < B$ is added to the plan.
 - If A is new also add $\text{start} < A$ and $A < B$ to the plan

- Resolve conflicts between new causal link and all existing actions

- Resolve conflicts between action A (if new) and all existing causal links.
Process summary

- Operators on partial plans
 - Add link from existing plan to open precondition.
 - Add a step to fulfill an open condition.
 - Order one step w.r.t another to remove possible conflicts

- Gradually move from incomplete/vague plans to complete/correct plans

- Backtrack if an open condition is unachievable or if a conflict is unresolvable.
Example: Spare tire problem

\[\text{Init(At(Flat, Axle) \land At(Spare, trunk))} \]
\[\text{Goal(At(Spare, Axle))} \]
\[\text{Action(\text{Remove(Spare, Trunk)})} \]
\[\quad \text{PRECOND: \text{At(Spare, Trunk)}} \]
\[\quad \text{EFFECT: \neg\text{At(Spare, Trunk)} \land \text{At(Spare, Ground)}} \]
\[\text{Action(\text{Remove(Flat, Axle)})} \]
\[\quad \text{PRECOND: \text{At(Flat, Axle)}} \]
\[\quad \text{EFFECT: \neg\text{At(Flat, Axle)} \land \text{At(Flat, Ground)}} \]
\[\text{Action(\text{PutOn(Spare, Axle)})} \]
\[\quad \text{PRECOND: \text{At(Spare, Groundp)} \land \neg\text{At(Flat, Axle)}} \]
\[\quad \text{EFFECT: \text{At(Spare, Axle)} \land \neg\text{At(Spare, Ground)}} \]
\[\text{Action(\text{LeaveOvernight})} \]
\[\quad \text{PRECOND:} \]
\[\quad \text{EFFECT: \neg\text{At(Spare, Ground)} \land \neg\text{At(Spare, Axle)} \land \neg\text{At(Spare, trunk)} \]
\[\quad \land \neg\text{At(Flat, Ground)} \land \neg\text{At(Flat, Axle)} \) \]
Solving the problem

- Initial plan: Start with EFFECTS and Finish with PRECOND.
Solving the problem

- Initial plan: Start with EFFECTS and Finish with PRECOND.
- Pick an open precondition: \(\text{At}(\text{Spare, Axle}) \)
- Only \(\text{PutOn}(\text{Spare, Axle}) \) is applicable
- Add causal link: \(\text{PutOn}(\text{Spare, Axle}) \xrightarrow{\text{At}(\text{Spare, Axle})} \text{Finish} \)
- Add constraint: \(\text{PutOn}(\text{Spare, Axle}) < \text{Finish} \)
Solving the problem

- Pick an open precondition: \(\text{At} (\text{Spare, Ground}) \)
- Only \(\text{Remove} (\text{Spare, Trunk}) \) is applicable
- Add causal link: \(\text{Remove}(\text{Spare, Trunk}) \xrightarrow{\text{At}(\text{Spare, Ground})} \text{PutOn}(\text{Spare, Axle}) \)
- Add constraint: \(\text{Remove}(\text{Spare, Trunk}) < \text{PutOn}(\text{Spare, Axle}) \)
Solving the problem

- Pick an open precondition: \textit{At}(\textit{Spare}, \textit{Ground})
- \textit{LeaveOverNight} is applicable
- conflict: \textit{Remove}(\textit{Spare}, \textit{Trunk}) \quad \textit{At}(\textit{Spare}, \textit{Ground}) \rightarrow \textit{PutOn}(\textit{Spare}, \textit{Axle})
- To resolve, add constraint: \textit{LeaveOverNight} < \textit{Remove}(\textit{Spare}, \textit{Trunk})
Solving the problem

- Pick an open precondition: $At(Spare,\ Ground)$
- $LeaveOverNight$ is applicable
- conflict: $Remove(Spare,\ Trunk) \xrightarrow{At(Spare,\ Ground)} PutOn(Spare,\ Axle)$
- To resolve, add constraint: $LeaveOverNight < Remove(Spare,\ Trunk)$
- Add causal link:

$$LeaveOverNight \xrightarrow{\neg At(Spare,\ Ground)} PutOn(Spare,\ Axle)$$
Solving the problem

- Pick an open precondition: \texttt{At(Spare, Trunk)}
- Only \texttt{Start} is applicable
- Add causal link: \texttt{Start} \xrightarrow{\texttt{At(Spare,Trunk)}} \texttt{Remove(Spare,Trunk)}
- Conflict: of causal link with effect \texttt{At(Spare,Trunk)} in \texttt{LeaveOverNight}
 - \textit{No re-ordering solution possible.}
- backtrack
Solving the problem

- Remove *LeaveOverNight*, *Remove*(Spare, Trunk) and causal links
- Repeat step with *Remove*(Spare, Trunk)
- Add also *Remove*(Flat, Axle) and finish
Some details …

- What happens when a first-order representation that includes variables is used?
 - Complicates the process of detecting and resolving conflicts.
 - Can be resolved by introducing inequality constraints.

- CSP’s most-constrained-variable constraint can be used for planning algorithms to select a PRECOND.
Planning graphs

- Used to achieve better heuristic estimates.
 - A solution can also directly extracted using GRAPHPLAN.
- Consists of a sequence of levels that correspond to time steps in the plan.
 - Level 0 is the initial state.
 - Each level consists of a set of literals and a set of actions.
 - *Literals* = all those that *could* be true at that time step, depending upon the actions executed at the preceding time step.
 - *Actions* = all those actions that *could* have their preconditions satisfied at that time step, depending on which of the literals actually hold.
Planning graphs

- “Could”?
 - Records only a restricted subset of possible negative interactions among actions.

- They work only for propositional problems.

- Example:
 Init(Have(Cake))
 Goal(Have(Cake) ∧ Eaten(Cake))
 Action(Eat(Cake), PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))
 Action(Bake(Cake), PRECOND: ¬ Have(Cake)
 EFFECT: Have(Cake))
Cake example

- Start at level S0 and determine action level A0 and next level S1.
 - A0 >> all actions whose preconditions are satisfied in the previous level.
 - Connect precond and effect of actions S0 --> S1
 - Inaction is represented by persistence actions.
- Level A0 contains the actions that could occur
 - Conflicts between actions are represented by mutex links
Cake example

- Level S1 contains all literals that could result from picking any subset of actions in A0
 - Conflicts between literals that can not occur together are represented by mutex links.
 - S1 defines multiple states and the mutex links are the constraints that define this set of states.
- Continue until two consecutive levels are identical: *leveled off*
 - Or contain the same amount of literals (explanation follows later)
A mutex relation holds between **two actions** when:
- *Inconsistent effects*: one action negates the effect of another.
- *Interference*: one of the effects of one action is the negation of a precondition of the other.
- *Competing needs*: one of the preconditions of one action is mutually exclusive with the precondition of the other.

A mutex relation holds between **two literals** when (*inconsistent support*):
- If one is the negation of the other OR
- if each possible action pair that could achieve the literals is mutex.
PG and heuristic estimation

PGs provide information about the problem

- A literal that does not appear in the final level of the graph cannot be achieved by any plan.
 - Useful for backward search (cost = inf).

- Level of appearance can be used as cost estimate of achieving any goal literals = *level cost*.

- Small problem: several actions can occur
 - Restrict to one action using serial PG (add mutex links between every pair of actions, except persistence actions).

- Max-level, sum-level and set-level heuristics.

PG is a relaxed problem.
The GRAPHPLAN Algorithm

- How to extract a solution directly from the PG

```plaintext
function GRAPHPLAN(problem) return solution or failure
    graph ← INITIAL-PLANNING-GRAPH(problem)
    goals ← GOALS[problem]
    loop do
        if goals all non-mutex in last level of graph then do
            solution ← EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
            if solution ≠ failure then return solution
            else if NO-SOLUTION-POSSIBLE(graph) then return failure
        graph ← EXPAND-GRAPH(graph, problem)
```