Industrial Embedded Systems
- Design for Harsh Environment -

Dr. Alexander Walsch
alexander.walsch@ge.com

IN2244
WS 2012/13
Technical University Munich (TUM)
Motivation

- What is critical infrastructure?
What is critical infrastructure?
(from wikipedia) a term used by governments to describe assets that are essential for the functioning of a society and economy. Most commonly associated with the term are facilities for:

- electricity generation, transmission and distribution
- oil and gas production, transport and distribution
- telecommunication
- water and food supply
- heating (e.g. natural gas, fuel oil, district heating)
- public health (hospitals, ambulances)
- transportation systems (fuel supply, railway network, airports, harbors)
- financial services (banking, clearing)
- security services (police, military).

Source: GE O&G
Motivation II

- What does it relate to this lecture?
 Critical infrastructure relies on computer systems, sometimes deeply embedded (depending on the hierarchical control level and the business strategy) – a hidden technology:
 No-one cares if they do their job. A disaster if they fail.

- It is not only important what we do but also how or how well we do
 - process (especially in regulated environment)
 - performance (there are a few but one counts more than others): \textit{reliability}

- Why will it be even more important in the future?
 - More and more electric systems (electrification)
 - Autonomous systems (no human in the loop)
What will you (hopefully) learn about?

- Reliability in embedded systems design
- Functional safety
- Design patterns for hardware
- Design patterns for software
- How some design documents could look like
- V+V terms and its applications

We will not focus on cost, market strategy, etc. We will have a technical view.
Some Books

- D. Patterson, J. Hennessy, Computer Organization and Design: The Hardware/Software Interface
- A. Tanenbaum, Operating Systems Design and Implementation
- D. Smith, Reliability, Maintainability and Risk
- A. Korff, Modellierung von eingebetteten Systemen mit UML und SysML (I believe only in German)
- L. Hatton, Safer C
Lecture Organization

- When and What

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.10.</td>
<td>Introduction</td>
</tr>
<tr>
<td>05.11.</td>
<td>Requirements, reliability</td>
</tr>
<tr>
<td>19.11.</td>
<td>Safety</td>
</tr>
<tr>
<td>03.12.</td>
<td>Example PMU</td>
</tr>
<tr>
<td>17.12.</td>
<td>Hardware Architecture</td>
</tr>
<tr>
<td>14.01.</td>
<td>Software Architecture</td>
</tr>
<tr>
<td>28.01.</td>
<td>Example PMU + V&V</td>
</tr>
<tr>
<td>Tbd</td>
<td>Exam (oral or written)</td>
</tr>
</tbody>
</table>

- Homepage:
 http://www6.in.tum.de/Main/TeachingWs2012IndEmbSystems
Part I: Basic Knowledge

Process
Probability
Systems
EE
CS
The V-model
– a design process -

- Modified V-model on the right side (covers field test, y = refinement, x = time)
- A requirements driven approach
- Design gets more detailed as it proceeds in time
- Tests are defined at the time of design (testability - left wing of V)
- Tests are executed at the V+V stage (pass/fail - right wing of V)

- Iterative process that defines phases for design and testing
- Used for system, HW, SW
- Other processes: waterfall, spiral, agile
A patient is admitted to the hospital and a potentially life-saving drug is administered. The following dialog takes place between the nurse and a concerned relative.

RELATIVE: Nurse, what is the probability that the drug will work?
NURSE: I hope it works, we’ll know tomorrow.
RELATIVE: Yes, but what is the probability that it will?
NURSE: Each case is different, we have to wait.
RELATIVE: But let’s see, out of a hundred patients that are treated under similar conditions, how many times would you expect it to work?
NURSE (somewhat annoyed): I told you, every person is different, for some it works, for some it doesn’t.
RELATIVE (insisting): Then tell me, if you had to bet whether it will work or not, which side of the bet would you take?
NURSE (cheering up for a moment): I’d bet it will work.
RELATIVE (somewhat relieved): OK, now, would you be willing to lose two dollars if it doesn’t work, and gain one dollar if it does?
NURSE (exasperated): What a sick thought! You are wasting my time!

Source: Bertsekas, Tsitsiklis Introduction to Probability
Uncertain (statistical) vs. deterministic outcome

Think about a percentage (e.g. 1 out of a million) as in terms of frequency of occurrence

Probabilistic models express scenarios with uncertain outcome and help us to assign a probability to certain sets of outcome (e.g. the probability that a certain component (or a set of components) will fail after a certain time).
Elements of a Probabilistic Model

- The sample space Ω, which is the set of all possible outcomes of an experiment.

- The probability law, which assigns to a set A of possible outcomes (also called an event) a nonnegative number $P(A)$ (called the probability of A) that encodes our knowledge or belief about the collective “likelihood” of the elements of A. The probability law must satisfy certain properties to be introduced shortly.

Source: Bertsekas, Tsitsiklis Introduction to Probability

A. Walsch, IN 2244 WS2012/13
Probability Axioms

1. (Nonnegativity) $P(A) \geq 0$, for every event A.

2. (Additivity) If A and B are two disjoint events, then the probability of their union satisfies

$$P(A \cup B) = P(A) + P(B).$$

Furthermore, if the sample space has an infinite number of elements and A_1, A_2, \ldots is a sequence of disjoint events, then the probability of their union satisfies

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

3. (Normalization) The probability of the entire sample space Ω is equal to 1, that is, $P(\Omega) = 1$.

Some Properties of Probability Laws

Consider a probability law, and let A, B, and C be events.

(a) If $A \subseteq B$, then $P(A) \leq P(B)$.

(b) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

(c) $P(A \cup B) \leq P(A) + P(B)$.

(d) $P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)$.

Source: Bertsekas, Tsitsiklis Introduction to Probability
Properties of Conditional Probability

- The conditional probability of an event A, given an event B with $P(B) > 0$, is defined by

$$P(A | B) = \frac{P(A \cap B)}{P(B)},$$

and specifies a new (conditional) probability law on the same sample space Ω. In particular, all known properties of probability laws remain valid for conditional probability laws.

- Conditional probabilities can also be viewed as a probability law on a new universe B, because all of the conditional probability is concentrated on B.

- In the case where the possible outcomes are finitely many and equally likely, we have

$$P(A | B) = \frac{\text{number of elements of } A \cap B}{\text{number of elements of } B}.$$

Source: Bertsekas, Tsitsiklis Introduction to Probability

If A and B are independent

$$P(A \cap B) = P(A)P(B).$$
An experiment involves a sequence of independent but identical stages -> independent trials

In the case of two possible outcomes (heads or tails)

Source: Bertsekas, Tsitsiklis
Introduction to Probability

\[p(k) = \binom{n}{k} p^k (1-p)^{n-k}, \]

where

\[\binom{n}{k} = \text{number of distinct } n\text{-toss sequences that contain } k \text{ heads.} \]
Systems I
- what is a system? -

- System border
- System components
- System function
Control systems – open loop/closed loop

Monitoring systems – monitoring and diagnostics

Protection systems – safety functions

Combination of the above
Control systems – open loop and closed loop

open loop: solenoid valve

closed loop: BLDC motor

Source: Microchip AN894
Monitoring systems – monitoring and diagnostics

Monitoring systems are used to collect system data (on-board, off-board) for online or offline diagnostics (RM&D, CBM).

analysis in case of remote systems (“flight recorder”).

- Temperature
- Humidity
- Pressure
- Currents
- Voltages
Protection systems – safety functions

Protection systems have the sole purpose to put the system into a safe state upon fault detection (fail safe). The safe state needs to be maintained until a clearance operation has been carried out (e.g. safety chains).
Important environmental constraints:

- Temperature (e.g. -40 to +85 °C ambient)
- Electromagnetic compatibility – EMC (conductive, inductive, capacitive, radiative coupling)
- Shock (e.g. 2000 g)
- Vibration (displacement, velocity, acceleration)
- More exotic once (rad hard etc.)
An analog frontend to a digital computer must be able to provide elements for signal conditioning or math.

A single component, the operational amplifier, is able of doing that depending on its configuration.

An (ideal) op amp is an amplifier circuit with differential input and (infinite) large gain.

Op amp is always used with a component network (R, C) and negative feedback.

Voltage calculations based on Kirchhoff‘s law, superposition, and „virtual mass“ \((U_d=0)\)

\[
\sum V_{\text{SOURCES}} = \sum V_{\text{DROPS}}
\]

\[
\sum I_{\text{IN}} = \sum I_{\text{OUT}}
\]

\[I_1 + I_2 = I_3 + I_4\]
Combinatorical circuits – the output is a boolean function of the input

Source: http://www.virtualuniversity.ch/
The digital computer computes a result

- Computer architecture (e.g. von Neumann) independent of calculation
- The functionality is translated into an algorithm (= step by step recipe)
- Real-time performance depends on I/O, instruction set, clock speed

- The digital computer is easily reconfigurable (software, stored program computer).

- The digital computer has (in theory) unlimited precision.
Nyquist frequency $f_N = 0.5 \times f_S$; f_N is the highest frequency component that must be present at the ADC input → proper reconstruction.
Computer Science III
– analog output -

DAC (Digital to Analog Converter) → Reconstruction Filter → Amplifier and Offset Stage

Power Supply
Protective circuits can contain both transient, over/under-voltage protection and galvanic isolation.
Embedded computer systems are inside another device used for running one predetermined application or collection of software (according to this a computer without software is not an embedded computer system).

Real-time performance requirement means that a function of the embedded computer system has an absolute maximum execution time.

Hard real-time means that severe damage to assets or loss of life results on violation of the performance requirement.

Soft real-time means that the average time for a function is constrained and loss of performance (or quality) results on violation.
Cyber-physical systems are networked embedded systems with connections amongst each other or to the outside world.

RTOS-based embedded systems run a real-time operating system. A real-time operating system provides support to meet real-time performance requirements.

Bare-metal embedded systems are not running an RTOS. All requirements are realized without an abstraction layer running on the bare metal.

Small footprint systems refer to limitations with respect to size, power, memory, etc.
A programmer’s model is an abstract or conceptual view of the structure and operation of a computing system. A microprocessor’s programming model shows its register file (e.g. data, address and special registers like stack pointer (here W15)).
Example System - PMU

- PMU: Pressure Measurement Unit
- Will be used as an example virtual technology development
- Measures pressure, temperature compensation, inexpensive, CAN interface
- We will work on the design throughout the lecture

- COTS single board small form factor
- Networking
- Small footprint
- Vendor specific design tools
- Safety-related
Questions ?