Real-Time Systems

Part 2: Time and Clocks

Introduction: Time and Order

1. The constants of physics are defined in relation to the standard of time: the physical second (e.g., speed: m/s)

 The global time in cyber-physical real-time systems should be also based on the metric of the physical second.

2. In distributed systems, the nodes must ensure that the events are processed in the same consistent order (preferably in the temporal order in which the events occurred).

 A global time base helps to establish such a consistent temporal order on the basis of the time-stamps of the events.
Temporal Order

- The continuum of Newtonian real time can be modeled by a directed timeline consisting of an infinite, dense and ordered set \(\{T\} \) of *instants* \(i \) (points in time).
- The section on the time line between two instants is called *duration* \(d \).
- **Events** \(e \) take place at an instant of time (but have no duration).
- Events that occur at the same instant are said to occur *simultaneously*.
- Instants are totally ordered.
- Events are partially ordered (additional criteria are required to totally order events, such as the node at which the event occurred).
Causal Order

• For real-time applications, the \textit{causal dependencies} among events e are of interest.

• The \textit{temporal order} of two events is \textit{necessary}, but \textit{not sufficient}, for their causal order.

• \textit{Causal order} is \textit{more} than \textit{temporal order}.
Digital Physical Clocks

• In digital physical clocks, a physical oscillation mechanism that periodically increases a counter is used to measure time.

• The periodic event is called a **microtick**.

• The duration **between two consecutive** microticks is called a **granule** of the clock.

• The granularity of a digital clock leads to a **digitization error** in time measurement.
Digital Physical Clocks: Phased-Locked Loop (PLL)

• Typical frequencies of crystal oscillators: kHz ... MHz
• CPUs, mobile phones, etc. require clock signals with frequencies in the GHz range
• Precise multiplication of the frequency of crystal oscillators is required
 → Phase-Locked Loop (PLL)

„A PLL is a circuit which synchronizes the frequency of the output signal generated by an oscillator with the frequency of a reference signal by means of the phase difference of the two signals.“

(J. Encinas)
Digital Physical Clocks: Reference Clock & Absolute Time-Stamp

- A reference clock is a clock z that runs at frequency f_z and which is in perfect sync with the international standard of time.
- $1/f_z$ is the granularity g_z of clock z.
- The granularity of a clock k is given by the number of microticks of the reference clock z between two subsequent microticks of the clock k.
- An absolute time-stamp of an event is the time of its occurrence measured by the reference clock.
- The duration between two events e is measured counting the microticks of the reference clock.
- The temporal order of events that occur between two consecutive events of the reference clock cannot be reestablished from their absolute time-stamps.
Digital Physical Clocks: Clock Drift

- The drift rate ρ of a physical clock k with respect to a reference clock z is defined as:
 $$\rho = | \frac{f_k}{f_z} - 1 |$$

- A perfect clock has a drift rate ρ of 0

- Drift rates vary due to changes in ambient temperature or ageing of crystal

- The data sheet of a resonator defines a maximum drift rate ρ_{max}.

- Due to the drift rate, clocks deviate from the reference clock over time if not resynchronized.

<table>
<thead>
<tr>
<th>Clock Type</th>
<th>Drift Rate [s/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>Pendulum</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Atom</td>
<td>1.5×10^{-14}</td>
</tr>
<tr>
<td>Atom (laser-cooled)</td>
<td>10^{-15}</td>
</tr>
</tbody>
</table>
Digital Physical Clocks: Failure Modes

- A digital physical clock can exhibit two types of failures:
 - The counter value could become erroneous (e.g. due to a overflow)
 - The drift rate could depart from the specified drift rate
Digital Physical Clocks: Offset

- Offset: The offset of two clocks is the time difference between the respective microticks of the two clocks – measured in the number of microticks of the reference clock.

[Diagram showing three clocks: Clock A, Clock B, and Reference Clock, with an arrow indicating the time scale labeled 'Time t'. There is an arrow labeled 'Offset' pointing to the difference between Clock A and Clock B, with a note 'here 3' indicating the offset value.]
Digital Physical Clocks: Precision & Internal Synchronization

- **Precision**: The precision Π denotes the maximum *offset* of respective microticks of an ensemble of clocks in a duration of interest and measured in microticks of the reference clock.

- Because of the drift rate ρ, an ensemble of clocks will drift apart if not resynchronized periodically. The process of mutual resynchronization is called *internal synchronization*.
Digital Physical Clocks: Accuracy

• **Accuracy**: The accuracy denotes the maximum *offset* of a given clock from the external time reference during a duration of interest.

• To keep a clock within a bounded accuracy it must be periodically resynchronized. This process is called *external synchronization*.

• Note: If all clocks of an ensemble are externally synchronized with an accuracy A, then the ensemble is also internally synchronized with a precision of $\leq 2A$ → the converse is not true
Digital Physical Clocks: Time Standards

• A time base origin is called the epoch.
• Three time standards are relevant for (distributed) real-time computer systems:

 1. The International Atomic Time (TAI)
 Defines the second as the duration of 9,192,631,770 periods of the radiation of a specified transition of the cesium atom 133. Epoch: January 1, 1958 at 00:00 h (GMT). TAI is a chronoscopic timescale – a timescale without discontinuities)

 2. The Universal Time Coordinated (UTC)
 Replaced GMT (Greenwich Mean Time) in 1972. Not chronoscopic (leap seconds – one-second adjustment to keep the UTC close to the mean solar time).

 3. UNIX (or POSIX) Time
 Seconds since January, 1st 1970 (UTC) not counting leap seconds.
Global Time

• If all clocks of a distributed system are internally synchronized with precision \(\Pi \), each \textbf{n-th} microtick of a clock can be interpreted as a \textit{macrotick} to approximate a \textit{global time}.

![Diagram of microticks and macroticks]

• The global time is called \textit{reasonable} when the internal synchronization error is less than the duration between two consecutive macroticks (i.e. the global time-stamps for a single event can differ by at most 1 tick).
Interval Measurement

• An interval is delimited by two events (e_{start} and e_{stop}).

• Interval measurement can be affected by:
 – the synchronization error
 – the digitalization error

• If the global time is reasonable, the interval error is always less than $2g$, where g is the granularity of the global time.
Summary: Fundamental Limits of Time Measurement

• In a distributed real-time system with a global time base (of granularity g), the following fundamental limits of measurements can be defined:

1. The time-stamp of an event observed by two nodes can differ by one tick. This, however, is not sufficient to recover the temporal order of the events.

2. The true duration d of an observed interval is bounded by +/- $2g$.

3. The temporal order of events can be recovered from their time-stamps if the difference between their time-stamps is equal or greater $2g$.
Internal Clock Synchronization

- Internal synchronization ensures that the global ticks of all nodes occur within a specified precision Π (despite the drift rate of each node).

- Resynchronization interval is called R_{int}

- The convergence function Φ denotes the offset after synchronization.

- The drift offset Γ indicates the maximum offset before synchronization.

- Synchronization condition: $\Phi + \Gamma \leq \Pi$
Internal Clock Synchronization: Non-fault tolerant algorithms

• Central Master Synchronization
 1. Master sends synchronization message with value of its time counter to all other nodes
 2. Slave records time-stamp when receiving synchronization message
 3. Slave computes deviation of its clock by taking the message transport latency into account and corrects its clock.

• Φ is determined by the fastest and slowest message transmission times (the latency jitter ε)

• The precision of the central master synchronization is:
 \[\Pi_{\text{central}} = \varepsilon + \Gamma \]

• Not fault tolerant: Failing master ends synchronization
Internal Clock Synchronization: Fault tolerant algorithms

• Standard procedure of fault-tolerant clock synchronization algorithms:

 - **Phase I**
 - Acquisition of state of the global time counters of all other nodes

 - **Phase II**
 - Analysis of collected data for error detection
 - Execution of convergence function to calculate correction value

 - **Phase III**
 - Adjustment of local time counter
Internal Clock Synchronization: Fault tolerant algorithms

- Main term affecting the synchronization precision is the jitter ε.
- Delay jitter depends on system level of creation and interpretation of time synchronization message:

<table>
<thead>
<tr>
<th>System Level</th>
<th>Jitter Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>500 ms – 5 ms</td>
</tr>
<tr>
<td>Kernel</td>
<td>10 ms – 100 ms</td>
</tr>
<tr>
<td>Hardware</td>
<td>< 1 ms</td>
</tr>
</tbody>
</table>

- It is not possible to internally synchronize the clocks of an ensemble of N nodes to a better precision than:
 \[\Pi = \varepsilon \cdot (1 - 1/N) \]
Internal Clock Synchronization: Cristian’s Algorithm

• S requests the time from M
• On reception of the request from S, M prepares a response containing the time T from its own clock
• S then sets its time to be $T + t_r/2$
Byzantine Errors

- **Byzantine** errors are errors where a component of a system fails in an **arbitrary** way (e.g., producing inconsistent outputs)

- Clock synchronization in the presence of Byzantine errors can only be guaranteed if:

 \[N \geq (3k + 1) \]

 where \(N \) is the total number and \(k \) the number of Byzantine faulty clocks.
Internal Clock Synchronization:
State Correction vs. Rate Correction

- Based on correction term calculated by the convergence function the local time can be adjusted using:

 State Correction
 - Correct local time immediately
 - Problem: Discontinuity in time (e.g. if clock is set backward, the same time value is reached twice)

 Rate Correction
 - Correct the rate (speed) of the clock
 - Digital implementation: Change number of microticks per macrotick
 - Analog implementation: Change parameters of the crystal oscillator
External Clock Synchronization

- External clock synchronization links the global time of a distributed system to an external time reference.
- Typically a designated node of the cluster, the time gateway, receives the time from the external time reference, computes the rate correction and forwards it to the nodes.
External Clock Synchronization: Time Formats

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Epoch</th>
<th>Format</th>
<th>Chronoscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Time Protocol (NTP)</td>
<td>January, 1st 1900, 00:00 h</td>
<td>4 Bytes for seconds 4 Bytes for fraction of seconds</td>
<td>No (based on UTC and therefore on leap seconds)</td>
</tr>
<tr>
<td>IEEE 1588</td>
<td>January, 1st 1970, 00:00 h</td>
<td>Seconds based on TAI Fraction of a second in nano seconds</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Time-Triggered Architecture (TTA) uses a mixture of NTP and IEEE 1588 as time format (full seconds based on TAI and parts of seconds as binary fraction) \rightarrow chronoscopic and fully conformant to the dual system
External Clock Synchronization: IEEE 1588

- IEEE 1588-2002 defines the Precision Time Protocol (PTP)
- Accuracy of < 1μs via Ethernet networks

From: Precision Clock Synchronization, White Paper, Hirschmann
Example: GPS

- The Global Positioning System (GPS) was developed by the US Department of Defense.
- Two services are provided:
 - Precise Positioning Service (PPS) – for military purposes.
 - Standard Positioning Service (SPS) – for civilian purposes. Precision was purposely degraded (Selective Availability SA) before May 2, 2000.
- Accuracies in the range of cm possible with Differential Global Positioning System (DGPS).
Example: High-Speed Printing

- Paper runs at speeds of up to 100 km/h
- All printing stations (for different colours) must be synchronised so that the deviation between individual prints is less than 1μm
- Station rollers can be synchronised by coupling them mechanically by shafts
- Better: precise timing via synchronised clocks in each station
Literature

- Official U.S. Government information about GPS
 http://www.gps.gov/
- http://www.ieee1588.com
- http://www.ptb.de/cms/presseaktuelles/uhrzeitapplikation.html
Backup
CERN’s White Rabbit Project
(based on “White Rabbit: a PTP Application for Robust Sub-nanosecond Synchronization”- Maciej Lipinski, et.al., ISPCS 2011 Munich)

- Goal: Develop an alternate timing and control system for the General Machine Timing at CERN
- Synchronization of up to 2000 nodes with sub-nanosecond accuracy, an upper bound on frame delivery and a very low data loss rate
- Based on and compatible with Ethernet (IEEE 802.3), Synchronous Ethernet (ITU-T Std. G.8262, 2007) and IEEE 1588-2008.
- For sub-nanosecond EVERYTHING matters: oscillators; media, PHY, board asymmetry, temperature, …
\(\pi/\Delta \) Precedence

- An event set \(\{E\} \) is called \(\pi/\Delta \) precedent if it fulfills the following condition for any two elements \(e_i \) and \(e_j \) of this set:
 \[
 |z(e_i) - z(e_j)| \leq \pi \lor |z(e_i) - z(e_j)| > \Delta
 \]
 where \(z \) is the reference clock, \(\pi \) and \(\Delta \) are durations (\(\pi \ll \Delta \)).

- \(\pi/\Delta \) Precedence: A subset of events that happen about the same time (within \(\pi \)) are separated by at least \(\Delta \) from another subset.