Real-Time Spherical Mosaicing using whole image alignment

team5
Andreas Bigontina
Oleksandr Golovatenko
Vladyslav Usenko
Contents

1. Task Clarification
2. Solution Implementation
3. Encountered Problems
 - Global optimization: regularization
4. ROS Interface
5. Documentation
Task Clarification

Implement real-type video mosaicing algorithm based on parallel image alignment via ESM and global optimization of a map of keyframes over the whole viewsphere.

S. Lovegrove and A. J. Davison, “Real-time spherical mosaicing using whole image alignment”
Solution Implementation

- Local Motion Estimation
 - **Status**: done + bugs fixed
 - Comment: whole image alignment + ESM

- Global Map Optimization
 - **Status**: implemented. Code and math review required.
 - Comment: ESM

- GPU implementation using OpenCL
 - **Status**: already using pyopencl
 - Comment: memory vs. performance
Solution Implementation

- Real-time video camera tracking
 - Status: cannot be achieved due to hardware limitations
- Parallel threads implementation
 - Status: already done in camera tracking
 - Comment: may need revision in ROS implementation
- ROS implementation
 - Status: done
- System performance/accuracy estimation
 - Status: planned
Encountered Problems

1. Global optimization: regularization

2. Boundary effects for gradient computation:
 - Computing image gradients, we used Mirror Reflection for point outside boundaries

3. Accumulated error in rotation matrices:
 - Rodriges formula to enforce orthonormality
 - SVD also might be used
Global optimization: regularization

\[f(x) = \frac{1}{2} \sum_j \sum_i \sum_{p_j \in \Omega_j} \left[T^i \left(H^{ij}(x)p_j \right) - T^j(p_j) \right]^2 \]

\[f'(x) = f(x) + \frac{1}{2} \mu^2 (f_u e^{k_0} - f_{u\text{ init}})^2 + \frac{1}{2} \mu^2 (f_v e^{k_1} - f_{v\text{ init}})^2 + \]

\[+ \frac{1}{2} \mu^2 (u_0 e^{k_2} - u_{0\text{ init}})^2 + \frac{1}{2} \mu^2 (v_0 e^{k_3} - v_{0\text{ init}})^2 \]

\[\frac{\partial f'(x)}{\partial k_0} \bigg|_0 = \mu f_u (f_u - f_{u\text{ init}}) \]

\[f'_{k_0}(0) = \mu (f_u - f_{u\text{ init}}) \]
ROS Interface

• Subscribe to
 – “/camera/image_color_rect”
 – “/camera/camera_info”

• Publish
 – “/panorama/image”
Documentation

• You can find source code with its description, documentation and usage examples here: https://github.com/tum-uav/rvc_team5/tree/master/spherical_mosaicing