Keyframe-Based SLAM with Bundle Adjustment

Team: gang-of-three
Video!!!
Structure

- **Thread 1 - Frontend**
 - Tracking
 - Camera pose estimation
 - KeyFrame Selection / Criteria

- **Thread 2 - Backend**
 - Map Management
 - Point Cloud Publishing

- **Thread 3 to n - Optimizer**
Frontend - Tracking

- BRISK / AGAST

- Dynamic Keypoint Threshold
 - keep the number of Keypoints in a constant range

- Window Matching
 - depends on Key Frame Criteria
Frontend

● Pose Estimation
 ○ RANSAC
 ○ Umeyama

● Key Frame Criteria
 ○ Only if enough Matches
 ○ Average Reprojection Error (between map and current frame)\cite{1}
 ■ Error Threshold: 0.5 Matching Window Size
 ○ Translation bigger than 20 cm
Backend

- **Map**
 - Observations
 - pixel position, feature descriptor
 - Shared pointers to relate KeyFrames, Observations and Points
 - Ensured thread save access
 - Points and KeyFrame poses in global frame
Backend

- Map Management
 - Add new KeyFrame
 - Compute local maps for Frontend and Optimizer
 - Notify when map changed
Optimizer

- Ceres Cost Function: reprojection error

- Challenge using Ceres:
 - Not thread-safe
 - Solution: Synchronisation wrapper classes
Conclusion

● **Achievement**
 ○ mapping and tracking working well with careful camera motion

● **To be done**
 ○ Code cleanup / refactoring
 ○ Local map for optimizer
 ○ Robust performance for different scenarios (BMW bagfile)
 ○ Loop closures
Reference

[1]: Hauke Strasdata, Andrew J. Davison, J.M. M. Montielb, Kurt Konoligecc. Double Window Optimisation for Constant Time Visual SLAM