Real-Time Near-Optimal Control Strategies for Dynamical Systems, such as Autonomous Cars and Robotic Manipulators

Bastian Schürmann

Technische Universität München

January 21, 2016
Control of Dynamical Systems

- Dynamical systems can be modeled using differential equations with states (position, velocity, etc.) and inputs (steering, acceleration, breaking, etc.)

- **Task:** Find an input sequence such that the car/robotic arm moves from the initial position to a desired end position
Many possible input combinations. How to choose?

Additional restrictions through

- Costs (time, energy consumption, forces) \(\rightarrow\) should be minimized
- Constraints (obstacles/other cars, maximum forces, maximum time) \(\rightarrow\) must not be violated

\(\Rightarrow\) Constrained optimization problem
Topic: Real-Time Near-Optimal Control Strategies for Dynamical Systems, such as Autonomous Cars and Robotic Manipulators

- Computing an optimal solution might take too long for real-time applications
- Often a faster, near-optimal solution is better than a much longer, optimal solution
- **Goal:** Compute a ”good enough” solution in the time given
- **Tasks:**
 - Review literature/read papers about different real-time, near-optimal control approaches
 - Implement one or more for an example system
 - Compare the approaches
Questions?

Contact:
Bastian Schürmann
MI 03.07.039
bastian.schuermann@in.tum.de