Introduction to Pulse Width Modulation (PWM)
What is PWM

- Output signal alternates between on and off within specified period.
- Control the power received by a device.
- The voltage seen by the load is directly proportional to the source voltage.
What is PWM?

- Depending on the requirement the width of the pulse is modulated (adjusted).
- Duty cycle = $\frac{t_{on}}{t_{on} + t_{off}}$.
Why PWM?

- Analog voltage control:
 - Voltage can be changed to control the motor speed
 - Can NIOS change voltage?
Why PWM?

- Digital voltage control:
 - Can only control ‘1’ and ‘0’
 - \(X\% \) of maximum analog voltage = \(X\% \) of duty cycle

![Graph comparing Analog and Digital control with 50% duty cycle](image-url)
How to generate PWM signal?

- Software method
 - Using counter
 - Count to 100 in a loop
 - Set the output value to 1 in the beginning of the loop
 - Set the output value to 0 as soon as the counter reaches the value of required duty cycle.
 - Continue the process
 - Using interrupt
 - Home work
 - Think about the concept
Your tasks

- Create projects in a usual way using provided SOPCINFO file.
- Type the code in your application project.
- Change duty cycle variable and observe the effect on oscilloscope or LED.
- Using oscilloscope, verify the duty cycle.
 - Is it precise?
 - Is it efficient?
Software PWM

- Output pin:
 - GPIO_0[0]
 - Using the manual find out the correct pin and observe the resulting PWM on the oscilloscope
 - In C program, use the following instructions to change the output
 - IOWR(PIO_0_BASE, 0, 0); // set output 0
 - IOWR(PIO_0_BASE, 0, 1); // set output 1

- Control LED (optional):
 - Apply the PWM signal to LED, observe the intensity
Questions