Final Project Proposal
Systematic Evaluation of Binary Descriptors
Approach

• Input:
 − Rotation invariance?
 − Memory consumption
 − Performance related parameters

• Automatic optimization

• Output:
 − Best binary descriptor for the given settings, training data and search space
Training data

- Given data, e.g. Multi-view Stereo Correspondence Dataset from the University of British Columbia

- Any set of images
 Apply transformations for known perspective distortions and do lighting changes / add noise

- Renderings
 Render 3D objects from multiple views and calculate non-occluded correspondences
Parameters to optimize

- Sample positions and combinations
- Sample averaging sizes
- Sample source:
 - Color image
 - Intensity image
 - Gradient image
 - ...
- ...
- ...

Global Maximum
Optimization

• Start with a set of parameters

• In a loop:
 – Slightly perturb parameters and evaluate quality
 – If quality improved, take over new parameters

• Global optimization method: Simulated annealing
Comparison with existing descriptors

• **BRIEF**
 Binary Robust Independent Elementary Features

• **ORB**
 Oriented FAST and Rotated BRIEF

• **FREAK**
 Fast Retina Keypoint

• **BRISK**
 Binary Robust Invariant Scalable Keypoints

Figure 1: Illustration of our FREAK descriptor. A series of Difference of Gaussians (DoG) over a retinal pattern are 1 bit quantized.
Evaluation

Global Maximum
Roadmap

1. Find / build / select training data
2. Implement evaluation of existing descriptors (graphs)
3. Implement optimization process
4. Add and play around with parameters to optimize :)