Stereo SLAM
(Simultaneous localization and Mapping)

Group: A-Team

- Goal: accurate dense point cloud representation of the world

Step 1
- Grid-FAST Detector
 - User specified
 - grid size
 - points per cell
 - Decrease Workload for Descriptor

Step 2: 3D Feature Map of the environment
- Not only current time step n but also time step n-1.
- All previous time steps, up to now.
- Concatenate currently detected 3D features (Keyframe)
- Keyframe = description with all previous ones.
- Complete and robust.
- Many past points are not visible.
- New data structures: Keyframe

Step 3: map
- We use our digital world.
- A combination of point cloud.
- Our data set contains all keyframes even location.
- Map of our world is complete.
- Robust solution.
- Collect data contribution.
- Test the absolute error of each worldframe.
Stereo SLAM
(Simultaneous localization and Mapping)

Group: A-Team

Step 1
- Grid-FAST Detector
- User specified
 - grid size
 - points per cell
- Decrease Workload for Descriptor

Step 2 - 3D Feature Map of the environment
- Not only current time step but also timestamps before
- All previous time steps up to now
- Compare currently detected 3D features (keypoints)
 - keypoint descriptions with all previous ones
 - Compute similarity w.r.t. position
- Many past points are not visible
- New 3D structure: Keyframe
• Grid-FAST Detector

Step 1

• Goal: accurate dense point cloud representation of the world

Group: A-Team
Step 1

- Grid-FAST Detector
- User specified
 - grid size
 - points per cell
- Decrease Workload for Descriptor
Step 2 - 3D Feature Map of the environment

- Not only current time step \(t[n] \) and last timestamp \(t[n-1] \)
- All previous time steps \(t \) up to now
- Compare currently detected 3D features (Point3d + keypoints + descriptors) with all previous ones
 - computationally expensive
 - many past points are not visible
- New data structure: Keyframe
• Keyframe
 • Aggregate 3D features from multiple views
 • Stores transformation
 • world to current Keyframe K_c
• Match currently detected 3D features
• only against closest Keyframe K_c
• New Keyframe
 • Ratio: detected points with / without matches
 • After certain distance (e.g. 1m)
 • Every x frames
 • All points from last Keyframe visible at the current position
 • Set new Keyframe transformation
Step 3 - dense map

- At this stage: resulting map very sparse
 - Represented as point cloud

- Use dense point cloud at every Keyframe (exercise 4)
 - Integrate resulting dense point clouds into the map
 - Result: dense map

- Dense (stereo) reconstruction
 - Run in a separate thread for each new Keyframe
Step 4 (optional)

- Improve performance via
 - Sliding Window Optimization
 - Bundle adjustment

- Several opportunities are included in GTSAM and g2o
Stereo SLAM (Simultaneous localization and Mapping)

Group: A-Team

- Goal: accurate dense point cloud representation of the world

Step 1
- Grid-FAST Detector
- User specified
 - grid size
 - points per cell
- Decrease Workload for Descriptor

Step 2: 3D Feature Map of the environment
- Not only current time stamp but and past timestamp
- All previous time steps up to now
- Compress (previously detected) 50 features (Image + Keyframe + description) with all previous ones
- Computationally expensive
- Many pixel points are not visible
- New data structure: Keyframe

Step 3: 3D Map
- All we have collected features are stored
- The point cloud is basically the 3D map
- Use point cloud at every keyframe even though it is noisy
- New realization: common in dynamic environment
- Several errors correction
- Not the exact distance of each feature/feature