SeqSLAM[1]

Final Presentation and Live Demo

Tim Wiese, Mathias Kanzler, Maxi Weber

TU München: Applied Computer Vision for Robotics SS 2013
The Problem

Recognition of recurring sceneries under changing environmental conditions:

- Camera input
- Saving compressed frames
- Applying algorithm to search for suitable matches
- Several improvements to fulfill given requirements
Preprocessing

Store compressed information without losing relevant information:

- Convert to grayscale
- Scale down to 64×36
- Contrast enhancement: stretch histogram, patch based
Matching

- Calculate image difference value for each template
- Local Contrast Enhancement
- Localized Sequence Recognition
Matching

- Calculate image difference value for each template
- Local Contrast Enhancement
- Localized Sequence Recognition
Matching

- Calculate image difference value for each template
- Local Contrast Enhancement
- Localized Sequence Recognition

Image difference matrix
Enhancements - Multithreading

Thread 1: Decoding and Preprocessing
Ring Buffer
Thread 2: Matching
Thread 3: Output
Enhancements - Stationary Frame Detection
Results

- Successful implementation of SeqSLAM
- Robust matching under changing conditions
- Multiple times faster than realtime performance
Outlook

- SeqSLAM could be used as independent visual positioning system
- Further improvements by intelligent template learning
 - Learning rate coupled with vehicle speed
 - Online aggregation of subsequent runs with changing environment
Schedule

| Week 1 | ● Read paper
 ● Understand topic
 ● Create schedule | Done!
 Done!
 Done! |
|---|---|---|
| Week 2 | ● Start implementation
 ● Preprocess datasets and create bagfiles
 ● Generate first basic output (matches side by side) | Done!
 Done!
 Done! |
| Week 3 | ● Implementation: final stage
 ● Testing
 ● Bug fixing
 ● Evaluation of matching quality and performance | Done!
 Done!
 Done!
 Done! |
| Week 4 | ● Parameter tuning
 ● Improvements (quality / performance)
 ● Enhancements
 ● Final presentation | Done!
 Done!
 Done!
 Done! |
Schedule

| Week 1 | ● Read paper
 ● Understand topic
 ● Create schedule | Done!
 Done!
 Done! |
|---|---|---|
| Week 2 | ● Start implementation
 ● Preprocess datasets and create bagfiles
 ● Generate first basic output (matches side by side) | Done!
 Done!
 Done! |
| Week 3 | ● Implementation: final stage
 ● Testing
 ● Bug fixing
 ● Evaluation of matching quality and performance | Done!
 Done!
 Done!
 Done! |
| Week 4 | ● Parameter tuning
 ● Improvements (quality / performance)
 ● Enhancements
 ● Final presentation | Done!
 Done!
 Done!
 Done! |
The End