Overview of RGB-D SLAM Approaches
Seminar Computer Vision & Visual Tracking for Robotic Applications

Tobias Hollarek
Technische Universität München
June 5, 2012
1 Introduction
2 The Approaches
3 Simultaneous Localization and Mapping
4 Global Optimization
5 Internal Map Representation
6 Practical demonstration
7 Questions
1. Introduction

2. The Approaches

3. Simultaneous Localization and Mapping

4. Global Optimization

5. Internal Map Representation

6. Practical demonstration

7. Questions
Simultaneous Localization and Mapping
- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - SLAM with RGB data only
 - SLAM using laser scanners
 - new development: Kinect style cameras
 => cheap acquisition of RGB-D data
Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment

SLAM using RGB-D data

- traditional approaches:
 - SLAM with RGB data only
 - SLAM using laser scanners
- new development: Kinect style cameras
 - cheap acquisition of RGB-D data
Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment

SLAM using RGB-D data

- traditional approaches:
 - SLAM with RGB data only
 - SLAM using laser scanners
- new development: Kinect style cameras
 - cheap acquisition of RGB-D data
Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment

SLAM using RGB-D data

- traditional approaches:
 - SLAM with RGB data only
 - SLAM using laser scanners
- new development: Kinect style cameras
 => cheap acquisition of RGB-D data

=> RGB-D SLAM
Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment

SLAM using RGB-D data

- traditional approaches:
 1. SLAM with RGB data only
 2. SLAM using laser scanners

- new development: Kinect style cameras
 ➞ cheap acquisition of RGB-D data

=> RGB-D SLAM
Introduction

- Simultaneous Localization and Mapping
 - Localization: knowing your environment, calculate your position
 - Mapping: building a map of your environment

- SLAM using RGB-D data
 - traditional approaches:
 1. SLAM with RGB data only
 2. SLAM using laser scanners
 - new development: Kinect style cameras
 \Rightarrow cheap acquisition of RGB-D data

\Rightarrow RGB-D SLAM
Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment

SLAM using RGB-D data

- traditional approaches:
 1. SLAM with RGB data only
 2. SLAM using laser scanners

new development: Kinect style cameras

=> cheap acquisition of RGB-D data
Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment

SLAM using RGB-D data

- traditional approaches:
 1. SLAM with RGB data only
 2. SLAM using laser scanners

- new development: Kinect style cameras

=> cheap acquisition of RGB-D data

=> RGB-D SLAM
Simultaneous Localization and Mapping
- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment

SLAM using RGB-D data
- traditional approaches:
 1. SLAM with RGB data only
 2. SLAM using laser scanners
- new development: Kinect style cameras
 => cheap acquisition of RGB-D data

=> RGB-D SLAM
Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment

SLAM using RGB-D data

- traditional approaches:
 1. SLAM with RGB data only
 2. SLAM using laser scanners
- new development: Kinect style cameras
 => cheap acquisition of RGB-D data

=> RGB-D SLAM
1 Introduction

2 The Approaches

3 Simultaneous Localization and Mapping

4 Global Optimization

5 Internal Map Representation

6 Practical demonstration

7 Questions
The Approaches

- RGB-D Mapping using RGB-D ICP (Henry et al.)

The Approaches

- RGB-D SLAM System (Endres et al.)

Figure: Endres et al., An Evaluation of the RGB-D SLAM System in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2012
The Approaches

- **Visual Odometry (Audras et al.)**

 Figure: Audras et al., *Real-time dense appearance-based SLAM for RGB-D sensors* in *Australian Conference on Robotics and Automation*, 2011
Outline

1. Introduction
2. The Approaches
3. Simultaneous Localization and Mapping
4. Global Optimization
5. Internal Map Representation
6. Practical demonstration
7. Questions
Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
extract feature points from F_s and F_t

Figure: Henry et al., *RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments* in: *International Journal of Robotics Research*, 2012
Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment \Rightarrow first approximation T'

- RANSAC = Random Sample Consensus
- randomly choose three pairs of feature points
- calculate a transformation from these points
- check errors from other feature points
- repeat for other triplets
- return Transformation with most inliers
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t

Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'

- RANSAC = Random Sample Consensus
- randomly choose three pairs of feature points
- calculate a transformation from theses points
- check errors from other feature points
- repeat for other triplets
- return Transformation with most inliers
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment \Rightarrow first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from these points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment \Rightarrow first approximation T'
3. if inliers $< k_{low}$: discard T'
4. if inliers $> k_{high}$: return T' as final transformation
5. else: compute T' from ICP
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment \Rightarrow first approximation T'
3. if $inliers < k_{low}$: discard T'
4. if $inliers > k_{high}$: return T' as final transformation
5. else: compute T' from ICP
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
3. if inliers $< k_{low}$: discard T'
4. if inliers $> k_{high}$: return T' as final transformation
5. else: compute T' from ICP
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment \Rightarrow first approximation T'
3. if $inliers < k_{low}$: discard T'
4. if $inliers > k_{high}$: return T' as final transformation
5. else: compute T' from ICP
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment \Rightarrow first approximation T'
3. if $inliers < k_{low}$: discard T'
4. if $inliers > k_{high}$: return T' as final transformation
5. else: compute T' from ICP

- ICP = Iterative Closest Points
- match features of F_s and F_t
- sparse features AND dense depth data used
- improve T' by minimizing matching error
- repeat matching and minimizing until $\text{change}(T') < \gamma$ or $\text{iterations} > n_{max}$
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
3. if $inliers < k_{low}$: discard T'
4. if $inliers > k_{high}$: return T' as final transformation
5. else: compute T' from ICP

- ICP = Iterative Closest Points
- match features of F_s and F_t
- sparse features AND dense depth data used
- improve T' by minimizing matching error
- repeat matching and minimizing until $\text{change}(T') < \gamma$ or $\text{iterations} > n_{\text{max}}$
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment \Rightarrow first approximation T'
3. if $\text{inliers} < k_{\text{low}}$: discard T'
4. if $\text{inliers} > k_{\text{high}}$: return T' as final transformation
5. else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error
 - repeat matching and minimizing until $\text{change}(T') < \gamma$ or $\text{iterations} > n_{\text{max}}$
Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment \Rightarrow first approximation T'
3. if $inliers < k_{low}$: discard T'
4. if $inliers > k_{high}$: return T' as final transformation
5. else: compute T' from ICP

- ICP = Iterative Closest Points
- match features of F_s and F_t
- sparse features AND dense depth data used
- improve T' by minimizing matching error
- repeat matching and minimizing until $change(T') < \gamma$ or iterations $> n_{max}$
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
3. if $\text{inliers} < k_{\text{low}}$: discard T'
4. if $\text{inliers} > k_{\text{high}}$: return T' as final transformation
5. else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error
 - repeat matching and minimizing until $\text{change}(T') < \gamma$ or $\text{iterations} > n_{\text{max}}$
Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
3. if $\text{inliers} < k_{\text{low}}$: discard T'
4. if $\text{inliers} > k_{\text{high}}$: return T' as final transformation
5. else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error
 - repeat matching and minimizing until $\text{change}(T') < \gamma$ or iterations $> n_{\text{max}}$
RGB-D ICP (Henry et al.)

Input: source RGB-D frame F_s, target RGB-D frame F_t
Output: optimized relative Transformation T

1. extract feature points from F_s and F_t
2. perform RANSAC alignment => first approximation T'
3. if $\text{inliers} < k_{\text{low}}$: discard T'
4. if $\text{inliers} > k_{\text{high}}$: return T' as final transformation
5. else: compute T' from ICP
 until $\text{change}(T') < \gamma$ or $\text{iterations} > n_{\text{max}}$
Front-End (Endres et al.)

- similar to RGB-D ICP
 - RANSAC + ICP to perform alignment
 - alignment with up to 20 frames
Front-End (Endres et al.)

- similar to RGB-D ICP
- RANSAC + ICP to perform alignment
- alignment with up to 20 frames
Front-End (Endres et al.)

- similar to RGB-D ICP
- RANSAC + ICP to perform alignment
- alignment with up to 20 frames
- only intensity data is used
- no feature extraction
- pixels with maximal gradient along one direction are chosen
- minimize jacobian of error function
- only intensity data is used
- no feature extraction
 - pixels with maximal gradient along one direction are chosen
- minimize jacobian of error function
- only intensity data is used
- no feature extraction
- pixels with maximal gradient along one direction are chosen
- minimize jacobian of error function
- only intensity data is used
- no feature extraction
- pixels with maximal gradient along one direction are chosen
- minimize jacobian of error function
1. Introduction
2. The Approaches
3. Simultaneous Localization and Mapping
4. Global Optimization
5. Internal Map Representation
6. Practical demonstration
7. Questions
Global Optimization

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection
 1. detect if same location is visited for the second time
 2. use information to optimize map:

Figure: Henry et al., RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments in: International Journal of Robotics Research, 2012
Global Optimization

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection
 1. detect if same location is visited for the second time
 2. use information to optimize map:

Figure: Henry et al., RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments in: International Journal of Robotics Research, 2012
Global Optimization

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
 - here: loop closure detection
 1. detect if same location is visited for the second time
 2. use information to optimize map:

Figure: Henry et al., RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments in: International Journal of Robotics Research, 2012
Global Optimization

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection
 1. detect if same location is visited for the second time
 2. use information to optimize map:

Global Optimization

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection
 1. detect if same location is visited for the second time
 2. use information to optimize map:

Global Optimization

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection
 1. detect if same location is visited for the second time
 2. use information to optimize map:

Outline

1. Introduction
2. The Approaches
3. Simultaneous Localization and Mapping
4. Global Optimization
5. Internal Map Representation
6. Practical demonstration
7. Questions
Internal Representation

- dense point cloud
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy

- surfels
 - improvements possible
 - needs less space

- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
dense point cloud
- expensive regarding space
- no improvement possible
- a lot of redundancy

surfels
- improvements possible
- needs less space

voxels
- improvements possible
- can store free space explicitly
- multi resolution mapping
Internal Representation

- dense point cloud
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy
- surfels
 - improvements possible
 - needs less space
- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
Internal Representation

- **dense point cloud**
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy

- **surfels**
 - improvements possible
 - needs less space

- **voxels**
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
Internal Representation

- dense point cloud
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy

- surfels
 - improvements possible
 - needs less space

- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
Internal Representation

- **dense point cloud**
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy

- **surfels**
 - improvements possible
 - needs less space

- **voxels**
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
Internal Representation

- dense point cloud
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy

- surfels
 - improvements possible
 - needs less space

- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
Internal Representation

- **dense point cloud**
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy

- **surfels**
 - improvements possible
 - needs less space

- **voxels**
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
Internal Representation

- **dense point cloud**
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy

- **surfels**
 - improvements possible
 - needs less space

- **voxels**
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
Internal Representation

- dense point cloud
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy
- surfels
 - improvements possible
 - needs less space
- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
Internal Representation

- dense point cloud
 - expensive regarding space
 - no improvement possible
 - a lot of redundancy

- surfels
 - improvements possible
 - needs less space

- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping
1. Introduction
2. The Approaches
3. Simultaneous Localization and Mapping
4. Global Optimization
5. Internal Map Representation
6. Practical demonstration
7. Questions
Practical Demonstration

YouTube Video from Henry et al.:

http://www.youtube.com/watch?v=58_xG8AkcaE&feature=player_
Outline

1. Introduction
2. The Approaches
3. Simultaneous Localization and Mapping
4. Global Optimization
5. Internal Map Representation
6. Practical demonstration
7. Questions
Thank you for your attention! Questions?