Online learning for comfort functions of the passengers in autonomous driving and the challenges

Natalia Poliakova and Varnika Tyagi, Group G

Technical University Munich
Department of Informatics
Chair for Robotics, Artificial Intelligence and Real-time Systems

Seminar - Online Learning in Autonomous Driving
Garching, 25. Januar 2019
GOAL: Autonomous Vehicle SAE level 5
● Efficiency
● Comfort
● Safety
- Efficiency
- Comfort
- Safety
Outline

Introduction and Classification

Approaches: Existing and Implemented

Challenges

Conclusion and Future work
Introduction and Classification

- What are comfort functions?
- What makes them important?
- How are they currently implemented?
Introduction and Classification

- Navigation control
- Velocity and Steering control
- Infotainment systems (speech and gesture recognition)

- Suspension systems
- Seat Ergonomics
- Ambience and Temperature control

Non-Beneficial

Beneficial

Comfort functions

Machine Learning
Comfort functions: no Online ML required

- Suspension system
 - Tasks of the suspension system
 - Main suspension categories
 - What is being done
Comfort functions: no Online ML required
Comfort functions: no Online ML required
Comfort functions: no Online ML required

- Seat geometry control
 - Seat design
 - Stages of influencing the geometry
 - Comfort estimation
Comfort functions: no Online ML required
Comfort functions: no Online ML required

- Other comfort functions of this type
- Why are Online ML methods not being actively implemented
- What attempts have been made in this direction.
Comfort functions: Online ML required

● Trajectory Planning
 ○ moving from point A to point B while avoiding collisions over time
 ○ Path Planning + Motion Planning w.r.t. velocity, time & kinematics

● Why place it as a comfort function
 ○ Mitigates whole body vibration, jerk exposure of occupants
Comfort functions: Online ML required

Standard Modular AV Architecture

Model Predictive Control and learning based AV Architecture
Comfort functions: Online ML required

- **Trajectory Planning - Key Changes**
 - Trajectory controller replaced by Robust Learning based MPC Controller, generator by driver model
 - **Motivation** - Learning from Human Behavior (Driving Style); and their perception of comfort
 - **Methodology** - Inverse Reinforcement Learning (IRL)
 - model the individual style in terms of a cost function
 - use feature-based inverse reinforcement learning to find optimum model parameters
 - efficiently compute trajectories
 - **Currently Used in** - Bosch’s AVs

Natalia Poliakova (TUM), Varnika Tyagi (TUM) | Seminar “Online Learning in Autonomous Driving”
Comfort functions: Online ML required

- Velocity and steering control
 - **Motivation** - Comfort via Navigational Ease
 - **Methodology** - Longitudinal Speed control problem formulation
 - Traditional proportional integral derivative (PID) replaced by self-adaptive PID of radial basis function neural network (RBFNN-PID)
 - Maximal deceleration and bounded jerk limits set for comfort
 - Forward simulation model = self-adaptive RBFNN-PID driver model + a vehicle dynamic model.
 - **Currently Used in** - Drive.ai’s “From piecewise to holistic DL approach for AVs”
Comfort functions: our implementation

- End to End Deep Learning
- Longitudinal movement control

Actual Steering Angle = [0.069214]
Predicted Steering Angle = [0.06796788]
L1 Error: [0.00124512]

Actual Steering Angle = [-0.00128867]
Predicted Steering Angle = [0.00138041]
L1 Error: [0.00260907]

Actual Steering Angle = [-0.002977]
Predicted Steering Angle = [-0.09123489]
L1 Error: [0.00174211]
Comfort functions: our implementation

- Trajectory Planning
- IRL Method, with movement control we “learned” previously as the observed driving style (input) for this simulation

At training time step 0

At the end of training
Challenges

- Data
 - Acquisition
 - Transportation

“For the sake of machine learning specifically there’s such a thing as a point of diminishing return.”

- Sacha Arnoud, Head, Waymo’s machine learning and perception division.
Challenges

● Safety Assurance

Learning-based Systems break all the conformity assessment principles and processes

“Safety usually isn’t about how you handle nominal cases. It’s about how well you handle edge cases.”
- Prof. Philip Koopman, Carnegie Mellon University
Conclusion and Future Work

- Summary
- Our experience
- Current state
- Comfort estimation
Conclusion and Future Work

- Future work
- Possible solutions to challenges
 - Humanisation of AV modules
 - Edge-case Research
 - Multimodal Redundancy
 - "Self-Supervised" Neural Networks
Conclusion and Future Work

● Duality in the approaches

● Remember -

“Autonomous Vehicles are likely to fail differently than humans.”

Prof. Philip Koopman, Carnegie Mellon University
Thank you!
Questions?
References:

[7] “Inside Waymo’s strategy to grow the best brains for self-driving cars”, article from The Verge
[8] Videos from Audi, Monroe, Continental and Bose official websites
References:

Appendix
Appendix

Steering Angles for normal_1 and swerve_1 runs

Number of data points per driving strategy

Normal
74.49% (34913)

Swerve
25.51% (11925)

Natalia Poliakova (TUM), Varnika Tyagi (TUM) | Seminar “Online Learning in Autonomous Driving”
Appendix

Normal label distribution

Swerve label distribution

Natalia Poliakova (TUM), Varnika Tyagi (TUM) | Seminar “Online Learning in Autonomous Driving”
Appendix
Appendix

IRL for Trajectory Control

- Quintic Splines for position -

\[s_j : [t_j, t_{j+1}] \rightarrow \mathbb{R}^2 \]

- Trajectory defined as -

\[r(t) = s_j(t), \text{ for } t \in [t_j, t_{j+1}] \]

- IRL MLE Approximation as -

\[\mathbb{E}_{p(r|\theta)}[f] = \int p(r | \theta) f(r) dr \]
Appendix

RBFNN for Velocity Control

- Research Strategy
 For Longitudinal Speed Problem

Natalia Poliakova (TUM), Varnika Tyagi (TUM) | Seminar “Online Learning in Autonomous Driving”
Appendix

Edge Case Research

What About Edge Cases?

- You should expect the extreme, weird, unusual
 - Unusual road obstacles
 - Extreme weather
 - Strange behaviors

- Edge Case are surprises
 - You won’t see these in testing
 ➔ Edge cases are the stuff you didn’t think of!

© 2018 Philip Koopman

Natalia Poliakova (TUM), Varnika Tyagi (TUM) | Seminar “Online Learning in Autonomous Driving”
Appendix

Edge Case Research - One possible solution

What We’re Learning With Hologram

- A scalable way to test & train on Edge Cases

Your fleet and your data lake → Hologram cluster tests your CNN → Hologram cluster trains your CNN → Your CNN becomes more robust

Natalia Poliakova (TUM), Varnika Tyagi (TUM) | Seminar “Online Learning in Autonomous Driving”
Appendix

Self-Supervised Neural Networks

Non-rigid image registration using self-supervised fully convolutional networks without training data
Hongming Li ; Yong Fan. 2018
Appendix

Multimodal Redundancy

Multimodal vehicle detection: fusing 3D-LIDAR and color camera data
Alireza Asvadi, Luis Garrote, Cristiano Premebida, Paulo Peixoto, Urbano J. Nunes
Appendix

Bi-LSTMs for Autonomous driving

3DOF Pedestrian Trajectory Prediction Learned from Long-Term Autonomous Mobile Robot Deployment Data
Li Sun ; Zhi Yan ; Sergi Molina Mellado ; Marc Hanheide ; Tom Duckett. 2018

Parallel planning: a new motion planning framework for autonomous driving
Long Chen ; Xuemin Hu ; Wei Tian ; Hong Wang ; Dongpu Cao ; Fei-Yue Wang 2019