Modeling Driver/Passenger Behavior According to Emotional States for In-Cabin Environment

Eesha Kumar
Pooreumoe Kim
Technische Universität München
Department of Informatics
Garching, 12.July.2019
Outline

- Introduction
- Behavior Modeling
- Future Work
- Conclusion
Outline

- Introduction
- Behavior Modeling
- Future Work
- Conclusion
Research Question(s)

How can we create/model human behavior from emotional states for In-Cabin Environments?

- What is human behavior?
- What are the major challenges in modeling behavior?
- Why should we model behavior?
- What are some possible approaches?
What is Human behavior?

“In a driving environment, particularly level 3 and 4 semiautonomous, a passenger's behavior is defined by an action performed within the observable environment resulting from an emotional state.”
Why should we model human behavior?

- Human Perspective
 - Safety for human-in-the-loop systems
 - Improve reliability and trust
 - Personalization and adaptability
- Autonomous Perspective
 - Actions as a Quantifiable uncertainty (Human Aware)
What are the major challenges in accurately modeling human behavior?

- Unpredictability in human nature
- One Emotional State can influence Multiple behaviors and/or vice-versa
- Too many unknowns in an environment
- Difficulty in accurately capturing environment data
What are some possible approaches?

- Machine Learning Techniques
- Variational Methods
- Probabilistic Models
- Self Assessments
Outline

- Introduction
- Behavior Modeling
- Future Work
- Conclusion
The Big Picture
Kim, Kumar. Modeling Driver/Passenger Behavior According to Emotional States for In-Cabin Environment
Emotion & Affection Recognition

1. Channels
 a. Questionnaire
 b. Electroencephalography (EEG)
 c. Audio
 d. Video
 e. Simulation

2. Techniques
 a. Machine Learning
 i. Conventional
 ii. Deep Learning
 b. Probabilistic Models
Emotion & Affection Recognition - Channels

Questionnaires

- Generating initial labeled data
- Preparing personalized data
Emotion & Affection Recognition - Channels

Simulation

- A popular method to acquire drivers’ data.

- A simulator may involve monitors, and camera to record subjects.

- It also generates artificial sounds to mimic driving environment\(^{[17]}\).
Emotion & Affection Recognition - Channels

Electroencephalography (EEG)

- It measures brain activity.

- Bryan James Higgs collected EEG data and use it to his car-following model\(^2\).

- M Soleymani, M Pantic, T Pun measured EEG as well as eye gaze to generate multi-modal model for emotion recognition \(^{14}\).
Emotion & Affection Recognition - Channels

Facial Recognition

- Informative component in emotion prediction.
- Eye Movement/ Gaze analysis improves accuracy\[^{21}\].
- Others measure facial thermometer\[^{12}\].

[A Behavior-based Emotion Recognition System in Intelligent Cars]
Speech Corpus

- A strong tool to measure emotion.
- Hard to collect natural verbal data from simulation (Privacy, etc)
- Researchers classifiers to identify emotions from IEMOCAP and SEMAINE [18].
Emotion & Affection Recognition - Channels

Body Features

- Ishan Behoora and Conrad S. Tucker quantified body parts.
- Labels such as head, right, left arm
- Measured velocity and acceleration of movements for each part \(^9\).
Emotion & Affect Recognition - Techniques

Machine Learning

1. **Conventional**
 a. Support Vector Machines
 b. Random Forests
 c. k-Nearest Neighbors

2. **Deep Learning**
 a. Deep Neural Networks
 b. LSTM Modeling
Emotion & Affect Recognition - Techniques

Machine Learning

1. Conventional
 a. Support Vector Machines
 b. Random Forests
 c. k-Nearest Neighbors

2. Deep Learning
 a. Deep Neural Networks
 b. LSTM Modeling

<table>
<thead>
<tr>
<th>classifier</th>
<th>features</th>
<th>AROUSAL</th>
<th>EXPECTATION</th>
<th>POWER</th>
<th>VALENCE</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WA</td>
<td>UA</td>
<td>WA</td>
<td>UA</td>
<td></td>
</tr>
<tr>
<td>BLSTM</td>
<td>A</td>
<td>6.85</td>
<td>6.93</td>
<td>643</td>
<td>63.5</td>
<td>66.1</td>
</tr>
<tr>
<td>LSTM</td>
<td>A</td>
<td>6.85</td>
<td>6.86</td>
<td>66.1</td>
<td>65.9</td>
<td>6.62</td>
</tr>
<tr>
<td>SVM [6]</td>
<td>A</td>
<td>63.7</td>
<td>64.0</td>
<td>63.2</td>
<td>5.22</td>
<td>6.62</td>
</tr>
<tr>
<td>BLSTM</td>
<td>A+L</td>
<td>67.8</td>
<td>66.9</td>
<td>64.8</td>
<td>62.0</td>
<td>6.63</td>
</tr>
<tr>
<td>LSTM</td>
<td>A+L</td>
<td>68.2</td>
<td>68.8</td>
<td>65.2</td>
<td>51.9</td>
<td>6.59</td>
</tr>
<tr>
<td>SVM [6]</td>
<td>A+L</td>
<td>63.7</td>
<td>64.0</td>
<td>63.2</td>
<td>5.22</td>
<td>6.62</td>
</tr>
<tr>
<td>BLSTM</td>
<td>V</td>
<td>62.3</td>
<td>62.9</td>
<td>62.3</td>
<td>51.8</td>
<td>6.62</td>
</tr>
<tr>
<td>LSTM</td>
<td>V</td>
<td>60.3</td>
<td>61.3</td>
<td>60.4</td>
<td>57.7</td>
<td>6.62</td>
</tr>
<tr>
<td>SVM [6]</td>
<td>V</td>
<td>60.2</td>
<td>57.9</td>
<td>58.3</td>
<td>56.7</td>
<td>6.62</td>
</tr>
<tr>
<td>BLSTM</td>
<td>A+V</td>
<td>67.7</td>
<td>68.0</td>
<td>63.1</td>
<td>53.4</td>
<td>6.62</td>
</tr>
<tr>
<td>LSTM</td>
<td>A+V</td>
<td>68.0</td>
<td>67.5</td>
<td>65.7</td>
<td>57.7</td>
<td>6.62</td>
</tr>
<tr>
<td>LSTM</td>
<td>A+L+V</td>
<td>67.4</td>
<td>66.8</td>
<td>65.3</td>
<td>56.7</td>
<td>6.62</td>
</tr>
<tr>
<td>BLSTM</td>
<td>A+L+V</td>
<td>67.9</td>
<td>69.3</td>
<td>65.0</td>
<td>53.2</td>
<td>6.62</td>
</tr>
<tr>
<td>LSTM</td>
<td>A+L+V</td>
<td>67.0</td>
<td>68.6</td>
<td>65.7</td>
<td>51.6</td>
<td>6.62</td>
</tr>
<tr>
<td>LSTM (LF)</td>
<td>A+V</td>
<td>62.6</td>
<td>64.3</td>
<td>67.6</td>
<td>57.6</td>
<td>6.62</td>
</tr>
<tr>
<td>LSTM (LF)</td>
<td>A+L+V</td>
<td>66.3</td>
<td>67.4</td>
<td>63.9</td>
<td>58.1</td>
<td>6.62</td>
</tr>
<tr>
<td>LSTM (LF)</td>
<td>A+L+V</td>
<td>67.9</td>
<td>69.3</td>
<td>65.0</td>
<td>53.2</td>
<td>6.62</td>
</tr>
</tbody>
</table>
Emotion & Affect Recognition - Techniques

Probabilistic Models

1. Bayesian Networks\(^5\)
2. Probabilistic Product Rule\(^5\)
3. Hidden Markov Models\(^{21}\)
Behavior Modeling

1) Machine Learning
2) Variational Methods
3) Probabilistic models
4) Self Assessment
Behavior Modeling - Machine Learning

- **Why?**
 - Personalization
 - Implicit association of data

- **How?**
 - e.g. K-means classification\(^\text{[1]}\)
 - Predicted trajectory sets by driver’s mental state
 - Match prediction against User Input

Driver Mental State:
- Attentive, partially attentive, or distracted?

Context:
- e.g. Right Lane or Left Lane? Entering intersection?

Environment Classification:
- K-means

Associated Prediction Set
Behavior Modeling - Variational Methods

- Why?
 - No overfitting
 - Various methodologies available

- How?
 - e.g. Model Cost functions to represent disturbance range \(^{[11]}\)
 - Minimise Risk Cost Function
 - Maximise Precision Function
Behavior Modeling - Probabilistic Models

- Why?
 - Mimics Human decision making
 - Quantify Uncertainty in actions

- How?
 - e.g. Maximum Expected Utility\(^5\)
 - Calculate action which maximises utility
 - Generate random actions as follow up
Behavior Modeling - Self Assessment (Manual)

- Why?
 - Ground Truth
 - Generation of Accurate Scenario Data

- How?
 - Questionnaires\cite{11,17}
 - Personal Interviews\cite{4}
Outline

Introduction

Behavior Modeling

Future Work

Conclusion
Future Work

- Non Intrusive Ways to record/sense data
- Further explore Unsupervised Learning and Reinforcement Learning techniques
- Hybrid Integration of Environment’s input sources
- Online Learning
- Portability and Personalization
Outline

Introduction Behavior Modeling Future Work Conclusion
Conclusion

- Behavior modeling remains largely ambiguous
- Past research and implementations
 - Machine Learning Techniques
 - Variational Methods
 - Probabilistic Models
 - Self Assessments
- Tradeoffs
 - Intrusive vs Non Intrusive measurement of data
 - Generalization vs Personalization
Questions
References

Thank you for your time! :)