Omnidirectional antireflective properties of porous tungsten oxide films with in-depth variation of void fraction and stoichiometry

Nikolaos Vourdasa, Konstantinos Dalamagkidisb, Ioannis Kostisa, Maria Vasilopouloua, Dimitrios Davazogloua

NCSR Demokritos, Institute of Microelectronics, Terma Patriarchou Gregoriou, 15310 Athens, Greece
bInstitut für Informatik VI, Technische Universität München (TUM), Boltzmannstraße 3, 85748 Garching bei München, Germany

A R T I C L E I N F O

Article history: Received 21 June 2012 Received in revised form 26 July 2012 Accepted 1 August 2012 Available online 25 August 2012

Keywords: Tungsten oxide Hot wire deposition RCWA Antireflective coatings

A B S T R A C T

We report on the fabrication of porous hot-wire deposited WOx (hwWOx) films with omnidirectional antireflective properties coming from in-depth variation of both (i) void fraction from 0% at the Si substrate/hwWOx interface to 30% within less than 7 nm and to higher than 50% at the hwWOx/air interface, and (ii) x, namely hwWOx stoichiometry, from 2.5 at the Si/hwWOx to 3 within less than 7 nm. hwWOx films were deposited by means of hw deposition at rough vacuum and controlled chamber environment. The films were analyzed by Spectroscopic Ellipsometry to extract the graded refractive index profile, which was then used in a rigorous coupled wave analysis (RCWA) model to simulate the antireflective properties. RCWA followed reasonably the experimental reflection measurements. Void fraction and x in-depth variation, controlled by the hw process, greatly affect the antireflective properties, and improve the omnidirectional and broadband characteristics. The reflection suppression below 10% within the range of 500–1000 nm for angles of incidence up to more than 60° is demonstrated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the last years the research activity in the area of solar cells has increased and has brought many solutions in order to achieve optimized efficiencies. To approach an optimal performance and to maximize efficiency broadband, antireflective coatings (ARC) are necessary [1].

The standard double layer antireflection coatings typically have a bandwidth lower than one octave, e.g., 400–700 nm [2], while solar cells require an antireflection coating operating in a broader range (e.g., 400–1700 nm) [3]. Thin films exhibiting thickness-graded refractive index profiles are being intensively studied recently, for applications in antireflective coatings with enhanced omnidirectionality and broadband characteristics [4]. The refractive index profile and hence the reflection suppression, is controlled either by depositing layers of different materials or by controlling the in-depth void fraction variation using multiple deposition steps, by employing various types of lithography and subsequent pattern transfer such as plasma etching, by incorporating particles and properly tuned deposition processes etc [5–11]. Even though most of these coatings exhibit good AR performance, the scale-up and the integration of most of these processes are either difficult or subject to serious economic constraints.

Recently we reported a simple method for depositing metal oxide films with their stoichiometry depending on the composition of the deposition ambient. It was found before that highly porous, stoichiometric (hwWOx) films were deposited at 0.1 Torr of N2. Due to their high porosity these films exhibited refractive index depending on thickness (i.e., deposition time) varying between 2 for thinner films and 1.2 for thicker ones, within the visible range [12]. By switching the deposition ambient from N2 to H2, sub-stoichiometric films, described as hwWOx with x < 3, were also obtained, with their degree of stoichiometry (x) and refractive index depending on the exact H2 partial pressure [13–15].

The aim of this work is to synthesize thin hwWOx films with improved omnidirectional AR performance, using hot-wire deposition, which is an easily implemented method as described before. In particular, here we present for the first time the fabrication of porous tungsten oxide films with graded refractive index, by varying the deposition ambient which initially contains H2 and then switched to N2 and we study their reflection performance. It is also shown that these films exhibit controllable in-depth profile of refractive index stemming from both the

0030-4018/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.optcom.2012.08.020
variation of stoichiometry and that of void fraction. The antireflective performance of thin and ultra-thin hwWO$_x$ films on Si and the significant reflection suppression, below 10%, within the broad range of 500–1000 nm, is presented.

2. Experimental

2.1. Tungsten oxide films fabrication

Depositions of hwWO$_x$ films were carried out in a hot-wire deposition system by heating the W filament in an ambient containing N$_2$ and H$_2$. The system was containing a stainless steel vacuum chamber (reactor) in which the substrate was positioned on a copper susceptor 5 cm below the heated W filament. An AC (50 Hz) current was used to heat the filament, and the temperature was monitored in situ, in order to calibrate electric current vs. filament temperature variation. Gases were injected into the reactor by a showerhead placed above the substrate; the corresponding flows were controlled by a gas line containing mass flow controllers (MFCs), valves and tubing. The pressure was monitored by a capacitance manometer (baratron), whose signal was used as input to a PC and the last was automatically driving a throttling valve placed between the chamber and the pumping system. The tungsten filament was heated at temperatures of 920 K, 1020 K and 1070 K. These temperatures are relatively low, compared to works from other groups, thus allowing only the surface oxide layer to be evaporated and not the metallic W. This feature provides additional advantages that are presented and discussed elsewhere [16]. Si pieces with dimensions of 2 x 2 cm2 cut from (1 0 0) Si wafers were used as substrates. Before deposition the substrates were given a piranha clean, washed in ultra-pure water, dried in a nitrogen stream and loaded into the chamber. After loading, the chamber was evacuated below 1.33 Pa and then the pressure was stabilized to 133.3 Pa with the aid of a flow of H$_2$ or N$_2$ while keeping the throttling valve fully open. After pressure stabilization the filament was turn on. Deposition time was used to control film thickness and the times used varied between 1 s and 60 s. Due to the short deposition times and the high thermal mass of the copper susceptor, the substrate temperature was remaining near room temperature during deposition. After turning-off the filament, samples were left to cool down to room temperature while the pressure and the ambient used for the deposition were maintained. The cooling down was enduring several minutes.

2.2. Film optical and morphological characterization

Deposited hwWO$_x$ films were characterized with a variety of techniques including spectroscopic ellipsometry (SE) within the 350–1000 nm range using a J.A Woolam Inc. M2000F rotating compensator ellipsometer (RCFTM) running the WVASE32 software at an angle of incidence (AOI) of 75.14$^\circ$.

The unmonochromatized Mg Ka line at 1253.6 eV (15 keV with 20 mA anode current) and an analyzer (Leybold EA-11) pass energy of 100 eV, giving a full width at half maximum, FWHM, of 1.3 eV for the Au 4f $^{7/2}$ peak, were used in all X-ray photoelectron (XPS) spectra measurements. The oxide stoichiometry was estimated using the XPS-measured W 4f and O 1s core-level spectra. To this extent, the areas under the photoemission peaks were integrated by fitting the O 1s and W 4f spectra with asymmetric Gaussian–Lorentzian curves.

A LEO Supra 35 VP scanning electron microscope (SEM) was used to characterize films morphology.

Specular optical reflectivity measurements were performed using the optical reflectometer FR-Basic by ThetaMetrisis S.A. (without integrating sphere) at near to normal AOI, using Tungsten white light source and spectrometer, and running the FR-Monitor software. An Al mirror with protective coating from Edmund Optics was used for reflection calibration.

3. Results and discussion

Tungsten oxide films were deposited with the hot-wire (hw) method using either N$_2$ or H$_2$ environment or a combination of both (switching the one after the other). Anticipating for
modeling details presented next, the calculated reflection of a Si substrate covered with a 107 nm thick layer of hwWO3 and for Angles of Incidence (AOI) varying between 0 and 90° is shown in Fig. 1. Calculations were based on the rigorous coupled wave analysis (RCWA), and we focus in the region of 500–1000 nm which is of great importance, for example, for Si solar cells. Results in Fig. 1(a) pertain to a homogeneous, stoichiometric and compact layer of hwWO3 on Si and demonstrates that reflection values below 10% exhibit only for wavelengths above 800 nm and AOIs of up to 30° for approximately a region of 17% of the total area in Fig. 1(a). This low reflection (reflection < 10%) area increases to 35% for a porous hwWO3 film exhibiting 30% porosity as seen in Fig. 1(b). Finally, a graded refractive index profile (see Fig. 5(a) for the detailed profile), causes a further increase of this area to 37% by improving the omnidirectionality by 3–4° and shifting the low reflection region towards lower wavelengths. In the case of inverse pyramid-like textured Si substrate, routinely used in Si solar cells manufacturing, an ARC coating such as the one described above will cause further decrease of the reflection seen in Fig. 1(b) and (c), as, e.g., shown for the case of TiO2 ARC [11]. For cells operating under sun-tracking this will decrease the requirements of the tracker for precision and therefore its price, which is related to the total price of the electricity produced.

In order to tune the refractive index profile, depositions of hwWO3 films were carried out in an ambient initially containing H2 and then switched to N2, in order to controllably change films stoichiometry. Also, different deposition times were used. X-ray photoelectron spectroscopy (XPS) has been applied to follow films stoichiometry. The evolution of the oxide reduction was monitored by measuring the intensity of the W 4f core levels and calculating the ratio between the W6+ component versus the W4+ component with lower oxidation states (e.g., 5+, 4+). By depositing the first layers of the film (e.g., the first 7 nm) under H2 environment it was found that they were sub-stoichiometric WOx (i.e., metallic [14]) with x=2.5 and their refractive index equal to 3. Then the deposition ambient was switched to N2 resulting in the deposition of a ca. 100 nm gradually porous hwWO3 layer. In Fig. 2(a) and (b) the XPS W 4f core levels of hwWO3 layers deposited under N2 and H2 environment, respectively, are presented. The raw data after a Shirley background subtraction were fitted by a non linear least square routine using components with lower oxidation states (e.g., 5+). By

Fig. 2. X-ray photoelectron spectra of W 4f core levels of (a) stoichiometric hwWO3 and (b) substoichiometric hwWO2.5.
hwWO$_3$, and voids in the upper layer, its optical properties were modeled with the aid of the Effective Medium Analysis (EMA) considering a mixture of the above and we extracted the corresponding volume fractions ($f_1(z)$, $f_2(z)$ and $f_3(z)$). The next sample was deposited at 5 s and was considered as a three-layer system the lower one consisting of hwWO$_{2.5}$, the intermediate one composed as described previously and the third one was again modeled using the EMA and the constituents considered for the intermediate layer and the volume fractions were extracted again. This procedure was followed for thicker films until reaching the final film thickness (78 nm and 107 nm).

The effective refractive index of each layer $N(z) = \frac{n}{C_0i^k}$, with $i = \sqrt{-1}$, is then approximated by the formula $N(z) = f_1(z)N_1 + f_2(z)N_2 + (1-f_1(z)-f_2(z))N_3^{\frac{1}{3}}$, with $q = 2/3$ [22]. The optical properties of the sub-stoichiometric (N_1) and stoichiometric (N_2) hwWO$_x$ that used in this study are shown in Fig. 4(a) and (b) while for the voids $N_3 = 1$.

The $N(z)$ (only the real part) at 500 nm for a 107 nm and 78 nm thick hwWO$_3$ is shown in Fig. 5(a) and (b). Note that with this approach there is no need to assume a model for the geometry of the surface (composed of conical, pyramid, parabolic-like features) [23].

The fraction of the sub-stoichiometric hwWO$_{2.5}$, as seen in Fig. 5(a) and (b), starts from 100% and goes to zero within less than 7 nm, while at the same time the fraction of (stoichiometric) hwWO$_3$ gradually increases, along with the void fraction. This variation smooths out the refractive index difference at the Si/hwWO$_x$ interface (at 500 nm Si: $n = 4.29$, Substoichiometric hwWO$_x$: $n = 2.63$, stoichiometric hwWO$_3$: $n = 2.39$) and therefore suppresses the reflection at this interface. The formation
mechanism for this gradual decrease of sub-stoichiometric hwWO\textsubscript{x} fraction vs. film thickness, under reducing ambient is discussed elsewhere [13]. The void fraction of \textasciitilde30\% is kept essentially constant until the final ca. 10 nm, after which point the void fraction increases towards higher values (80\% for the 107 nm film and 50\% for the 78 nm film), resulting in a corresponding reduction of refractive index.

In Fig. 6 the experimentally measured reflection (with FR-Basic by ThetaMetrisis) for hwWO\textsubscript{x} films of thickness 107 nm and 78 nm is presented for wavelengths between 400 nm and 900 nm. RCWA [24] was used to model reflection at vertical incidence (which corresponds to the first row of data at AOI=0° of Fig. 1 (c)). In-depth variation in fraction of voids, hwWO\textsubscript{3} and hwWO\textsubscript{2.5} derived from SE, was used as input to RCWA (see Fig. 5(a) and (b)). Fig. 6 compares the RCWA results with experimental data showing a very good agreement, both in the absolute value of reflection and the position of minimum and maximum. For comparison purposes the calculated reflectance from equally thick non-porous stoichiometric hwWO\textsubscript{3} films from RCWA are also illustrated for comparison purposes. Weighted average reflection for each case (\(R_w\)) is also depicted.

4. Conclusion

Summarizing and concluding, it was shown that hot-wire metal oxide deposition is a simple method able to produce films exhibiting controllable in-depth profile of refractive index stemming from both the variation of stoichiometry and that of void fraction. The antireflective performance of thin and ultra-thin hwWO\textsubscript{x} films on Si was presented and a significant reflection suppression, below 10\% within the range of 500–1000 nm, was shown for AOIs up to more than 60°. The deposition method allows for multiple switching of deposition ambient between N\textsubscript{2} and H\textsubscript{2} during the same run permitting further optimization of anti-reflection performance. SE analysis was employed to analyze the hwWO\textsubscript{x} optical properties layer by layer to extract the graded refractive index profile, which was subsequently used in the RCWA model to simulate the reflection properties. Our approach to simulate the reflection does not assume a specific model for the geometry of the surface, such as parabolic-, cone-like etc. The comparison between experimental and RCWA modeling results shows very good agreement. Film porosity along with the refractive index variations at the interfaces improves the omnidirectionality and broadband characteristics compared to the equally thick non-porous stoichiometric WO\textsubscript{3}.

Acknowledgements

N. Vourdas was financially supported by the State Scholarships Foundation of Greece—Post Doctoral fellowship program. ThetaMetrisis S.A. is acknowledged for providing the optical reflection measurement setup (FR-Basic).

References